1995 AHSME Problems/Problem 26

Revision as of 20:49, 5 July 2008 by Xantos C. Guin (talk | contribs) (New page: == Problem == In the figure, <math>\overline{AB}</math> and <math>\overline{CD}</math> are diameters of the circle with center <math>O</math>, <math>\overline{AB} \perp \overline{CD}</math...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In the figure, $\overline{AB}$ and $\overline{CD}$ are diameters of the circle with center $O$, $\overline{AB} \perp \overline{CD}$, and chord $\overline{DF}$ intersects $\overline{AB}$ at $E$. If $DE = 6$ and $EF = 2$, then the area of the circle is

1995 AHSME num.126.png

Link to Image

$\mathrm{(A) \ 23 \pi } \qquad \mathrm{(B) \ \frac {47}{2} \pi } \qquad \mathrm{(C) \ 24 \pi } \qquad \mathrm{(D) \ \frac {49}{2} \pi } \qquad \mathrm{(E) \ 25 \pi }$

Solution

Let the radius of the circle be $r$ and let $x=\overline{OE}$.

By the Pythagorean Theorem, $OD^2+OE^2=DE^2 \Rightarrow r^2+x^2=6^2=36$.

By Power of a point, $AE \cdot EB = DE \cdot EF \Rightarrow (r+x)(r-x)=r^2-x^2=6\cdot2=12$.

Adding these equations yields $2r^2=48 \Rightarrow r^2 = 24$.

Thus, the area of the circle is $\pi r^2 = 24\pi \Rightarrow C$.

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions