2024 AMC 10B Problems/Problem 18
- The following problem is from both the 2024 AMC 10B #18 and 2024 AMC 12B #14, so both problems redirect to this page.
Problem
How many different remainders can result when the th power of an integer is
divided by
?
Solution 1
First note that the totient function of is
. We can set up two cases, which depend on whether a number is relatively prime to
.
If is relatively prime to
, then
because of Euler's Totient Theorem.
If is not relatively prime to
, it must be have a factor of
. Express
as
, where
is some integer. Then
.
Therefore, can only be congruent to
or
. Our answer is
.
~lprado
Solution 2 (Euler Totient)
We split the cases into:
1. If x is not a multiple of 5:
we get
2. If x is a multiple of 125: Clearly the only remainder provides 0
Therefore, the remainders can only be 1 and 0, which gives the answer .
~mitsuihisashi14
Solution 3
Note that
Taking this mod , we can ignore most of the terms except the for the last
:
so . Substituting
for
, we get
. Therefore, the remainders when divided by
repeat every
integers, so we only need to check the
th powers of
. But we have that
and
give the same remainder, so we really only need to check
. We know that
produce different remainders, so the answer to the problem is either
or
. But
is not an answer choice, so the answer is
.
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.