2024 AMC 10B Problems/Problem 2
- The following problem is from both the 2024 AMC 10B #2 and 2024 AMC 12B #2, so both problems redirect to this page.
Contents
Problem
What is
[ONLY FOR CERTAIN CHINESE TESTPAPERS]
What is
Solution 1
Therefore, the equation is equal to
[ONLY FOR CERTAIN CHINESE TESTPAPERS]
~Aray10 (Main Solution) and RULE101 (Modifications for certain China test papers)
Solution 2
Factoring out gives Since , the answer is ~Tacos_are_yummy_1
Factoring also works, it just makes the expression in the parenthesis a little harder to compute.
Solution 3
Note that must be divisible by , and is the only option divisible by .
Solution 4
can be split into two parts, and . We can break the into The part makes , and the part makes , which is . We still have the 7!, and we can multiply it by . This is clearly equivalent to , so our solution is .
Solution 5
, , and . Of course, if you're fast enough, you can do . Therefore, .
-pepper2831
Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)
https://youtu.be/DIl3rLQQkQQ?feature=shared
~ Pi Academy
Video Solution 2 by SpreadTheMathLove
https://www.youtube.com/watch?v=24EZaeAThuE
Video Solution by Daily Dose of Math
~Thesmartgreekmathdude
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 1 |
Followed by Problem 3 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.