1971 AHSME Problems/Problem 22

Revision as of 09:27, 5 August 2024 by Thepowerful456 (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $w$ is one of the imaginary roots of the equation $x^3=1$, then the product $(1-w+w^2)(1+w-w^2)$ is equal to

$\textbf{(A) }4\qquad \textbf{(B) }w\qquad \textbf{(C) }2\qquad \textbf{(D) }w^2\qquad  \textbf{(E) }1$

Solution 1

Expanding the given expression yields $1+w-w^2-w-w^2+w^3+w^2+w^3-w^4=1-w^2+2w^3-w^4$. Recalling that $w^3=1$, we see that this expression equals $1-w^2+2-w=4-(1+w+w^2)$. By the properties of roots of unity $\neq 1$, $w^2+w+1=0$, so the given expression equals $\boxed{\textbf{(A) }4}$.

Solution 2 (not recommended)

Suppose $w=e^{i\tfrac{2\pi}3}=\cos(\tfrac{2\pi}3)+i\sin(\tfrac{2\pi}3) = \tfrac{-1+i\sqrt3}2$. Substituting this into the given expression, we can calculate the result: \begin{align*} (1-w+w^2)(1+w-w^2) &= (1-\frac{-1+i\sqrt3}2+(\frac{-1+i\sqrt3}2)^2)(1+\frac{-1+i\sqrt3}2-(\frac{-1+i\sqrt3}2)^2) \\ &= (1-\frac{-1+i\sqrt3}{2}+\frac{1-3-2i\sqrt3}{4})(1+\frac{-1+i\sqrt3}2-\frac{1-3-2i\sqrt3}{4}) \\ &= (1-\frac{-1+i\sqrt3}{2}+\frac{-1-i\sqrt3}{2})(1+\frac{-1+i\sqrt3}2-\frac{-1-i\sqrt3}{2}) \\ &= (1-2(\frac{i\sqrt3}2))(1+2(\frac{i\sqrt3}2)) \\ &= 1^2-(i\sqrt3)^2 \\ &= 1+3 \\ &= 4 \end{align*} Thus, our answer is $\boxed{\textbf{(A) }4}$.

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png