1971 AHSME Problems/Problem 7

Problem

$2^{-(2k+1)}-2^{-(2k-1)}+2^{-2k}$ is equal to

$\textbf{(A) }2^{-2k}\qquad \textbf{(B) }2^{-(2k-1)}\qquad \textbf{(C) }-2^{-(2k+1)}\qquad \textbf{(D) }0\qquad  \textbf{(E) }2$

Solution

By using the properties of exponents, we can simplify the given expression as follows to obtain our answer: \begin{align*} 2^{-(2k+1)} - 2^{-(2k-1)} + 2^{-2k} &= 2^{-2k-1} - 2^{-2k+1} + 2^{-2k} \\ &= \frac{2^{-2k}}2 - 2\cdot2^{-2k} + 2^{-2k} \\ &= 2^{-2k}(\frac12 - 2 + 1) \\ &= 2^{-2k}(-\frac12) \\ &= -\frac{2^{-2k}}2 \\ &= -2^{-2k-1} \\ &= \boxed{\textbf{(C) }-2^{-(2k+1)}}. \end{align*}

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png