2024 AMC 12B Problems/Problem 8

Revision as of 00:42, 14 November 2024 by Kafuu chino (talk | contribs) (Solution 1)

Problem

What value of $x$ satisfies \[\frac{\log_2x \cdot \log_3x}{\log_2x+\log_3x}=2?\]

$\textbf{(A) } 25 \qquad\textbf{(B) } 32 \qquad\textbf{(C) } 36 \qquad\textbf{(D) } 42 \qquad\textbf{(E) } 48$

Solution 1

We have \begin{align*} &\log_2x\cdot\log_3x=2(\log_2x+\log_3x) \\ &1=\frac{2(\log_2x+\log_3x)}{\log_2x\cdot\log_3x} \\ &1=2(\frac{1}{\log_3x}+\frac{1}{\log_2x}) \\ &1=2(\log_x3+\log_x2) \\ &\log_x6=\frac{1}{2} \\ &x^{\frac{1}{2}}=6 \\ &x=36 \end{align*} so $\boxed{\textbf{(C) }36}$

See also

2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png