Difference between revisions of "2024 AMC 12B Problems/Problem 13"
(→Solution 2 (Coordinate Geometry and AM-GM Inequality)) |
(→Solution 2 (Coordinate Geometry and AM-GM Inequality)) |
||
Line 51: | Line 51: | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso],~[https://artofproblemsolving.com/wiki/index.php/User:ShortPeopleFartalot] | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso],~[https://artofproblemsolving.com/wiki/index.php/User:ShortPeopleFartalot] | ||
− | |||
==Solution 3== | ==Solution 3== |
Latest revision as of 22:11, 25 December 2024
Contents
Problem 13
There are real numbers and that satisfy the system of equationsWhat is the minimum possible value of ?
Solution 1 (Easy and Fast)
Adding up the first and second equation, we get: All squared values must be greater than or equal to . As we are aiming for the minimum value, we set the two squared terms to be .
This leads to
~mitsuihisashi14
Solution 2 (Coordinate Geometry and AM-GM Inequality)
The distance between 2 circle centers is The 2 circles must intersect given there exists one or more pairs of (x,y), connecting and any pair of the 2 circle intersection points gives us a triangle with 3 sides, then Note that they will be equal if and only if the circles are tangent,
Applying the AM-GM inequality () in the steps below, we get
Therefore, .
Solution 3
~Kathan
Video Solution 1 by SpreadTheMathLove
https://www.youtube.com/watch?v=U0PqhU73yU0
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.