Difference between revisions of "2024 AMC 12B Problems/Problem 17"
(→Solution 1) |
m (→Solution 1) |
||
Line 8: | Line 8: | ||
==Solution 1== | ==Solution 1== | ||
− | + | <math>-10 \leq a, b \leq 10</math>, each of <math>a,b</math> has <math>21</math> choices | |
Applying Vieta, | Applying Vieta, | ||
Line 18: | Line 18: | ||
<math> x_1 \cdot x_2 + x_1 \cdot x_3 + x_3 \cdot x_2 = b</math> | <math> x_1 \cdot x_2 + x_1 \cdot x_3 + x_3 \cdot x_2 = b</math> | ||
− | + | Cases: | |
+ | (1) <math> (x_1,x_2,x_3) = (-1,1,6) , b = -1, a=-6</math> valid | ||
− | ( | + | (2) <math> (x_1,x_2,x_3) = ( 1,2,-3) , b = -7, a=0</math> valid |
− | ( | + | (3) <math> (x_1,x_2,x_3) = (1,-2,3) , b = -7, a=2</math> valid |
− | ( | + | (4) <math> (x_1,x_2,x_3) = (-1,2,3) , b = 1, a=4</math> valid |
− | ( | + | (5) <math> (x_1,x_2,x_3) = (-1,-2,-3) , b = 11</math> invalid |
− | ( | + | the total event space is <math>21 \cdot</math> (21- 1)<math> (choice of select a</math>\cdot<math>choice of selecting b given no-replacement) |
− | + | hence, our answer is </math>\frac{4}{21 \cdot 20}<math> = </math>\boxed{\textbf{(C) }\frac{1}{105}}$ | |
− | |||
− | |||
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] |
Revision as of 18:27, 16 November 2024
Problem 17
Integers and are randomly chosen without replacement from the set of integers with absolute value not exceeding . What is the probability that the polynomial has distinct integer roots?
.
Solution 1
, each of has choices
Applying Vieta,
Cases:
(1) valid
(2) valid
(3) valid
(4) valid
(5) invalid
the total event space is (21- 1)\cdot$choice of selecting b given no-replacement)
hence, our answer is$ (Error compiling LaTeX. Unknown error_msg)\frac{4}{21 \cdot 20}\boxed{\textbf{(C) }\frac{1}{105}}$
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.