Difference between revisions of "2024 AMC 12B Problems/Problem 17"

m (Problem 17: fix padding in answer choices)
(Solution 1)
Line 20: Line 20:
 
Case:
 
Case:
  
(1)  <math> (x_1,x_2,x_3) </math> = (-1,-1,-6) , b = 13 invalid
 
  
(2)  <math> (x_1,x_2,x_3) </math> = (-1,1,6) , b = -1, a=-6  valid  
+
(1)  <math> (x_1,x_2,x_3) </math> = (-1,1,6) , b = -1, a=-6  valid  
  
(3)  <math> (x_1,x_2,x_3) </math> = ( 1,2,-3) , b = -7, a=0  valid  
+
(2)  <math> (x_1,x_2,x_3) </math> = ( 1,2,-3) , b = -7, a=0  valid  
  
(4)  <math> (x_1,x_2,x_3) </math> = (1,-2,3) , b = -7, a=2  valid  
+
(3)  <math> (x_1,x_2,x_3) </math> = (1,-2,3) , b = -7, a=2  valid  
  
(5)  <math> (x_1,x_2,x_3) </math> = (-1,2,3) , b = 1, a=4  valid  
+
(4)  <math> (x_1,x_2,x_3) </math> = (-1,2,3) , b = 1, a=4  valid  
  
(6)  <math> (x_1,x_2,x_3) </math> = (-1,-2,-3) , b = 11 invalid  
+
(5)  <math> (x_1,x_2,x_3) </math> = (-1,-2,-3) , b = 11 invalid  
  
 
the total event space is 21 (choice of select a) <math>\cdot</math> (21- 1) (choice of selecting b given no-replacement)  
 
the total event space is 21 (choice of select a) <math>\cdot</math> (21- 1) (choice of selecting b given no-replacement)  

Revision as of 13:40, 15 November 2024

Problem 17

Integers $a$ and $b$ are randomly chosen without replacement from the set of integers with absolute value not exceeding $10$. What is the probability that the polynomial $x^3 + ax^2 + bx + 6$ has $3$ distinct integer roots?

$\textbf{(A) } \frac{1}{240} \qquad \textbf{(B) } \frac{1}{221} \qquad \textbf{(C) } \frac{1}{105} \qquad \textbf{(D) } \frac{1}{84} \qquad \textbf{(E) } \frac{1}{63}$.

Solution

Solution 1

-10 $\leq$ a, b $\leq$ 10 , each of a,b has 21 choices

Applying Vieta,

$x_1 \cdot x_2  \cdot x_3  = -6$

$x_1 + x_2+ x_2 = -a$

$x_1 \cdot x_2 + x_1 \cdot x_3  + x_3 \cdot x_2  = b$

Case:


(1) $(x_1,x_2,x_3)$ = (-1,1,6) , b = -1, a=-6 valid

(2) $(x_1,x_2,x_3)$ = ( 1,2,-3) , b = -7, a=0 valid

(3) $(x_1,x_2,x_3)$ = (1,-2,3) , b = -7, a=2 valid

(4) $(x_1,x_2,x_3)$ = (-1,2,3) , b = 1, a=4 valid

(5) $(x_1,x_2,x_3)$ = (-1,-2,-3) , b = 11 invalid

the total event space is 21 (choice of select a) $\cdot$ (21- 1) (choice of selecting b given no-replacement)

hence, probability = $\frac{4}{21 \cdot 20}$ = $\boxed{\textbf{(C) }\frac{1}{105}}$

~luckuso

See also

2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png