Difference between revisions of "2024 AMC 12B Problems/Problem 8"

(Solution 2)
m (Solution 1)
Line 8: Line 8:
 
We have
 
We have
 
\begin{align*}
 
\begin{align*}
&\log_2x\cdot\log_3x=2(\log_2x+\log_3x) \\
+
\log_2x\cdot\log_3x&=2(\log_2x+\log_3x) \\
&1=\frac{2(\log_2x+\log_3x)}{\log_2x\cdot\log_3x} \\
+
1&=\frac{2(\log_2x+\log_3x)}{\log_2x\cdot\log_3x} \\
&1=2(\frac{1}{\log_3x}+\frac{1}{\log_2x}) \\
+
1&=2(\frac{1}{\log_3x}+\frac{1}{\log_2x}) \\
&1=2(\log_x3+\log_x2) \\
+
1&=2(\log_x3+\log_x2) \\
&\log_x6=\frac{1}{2} \\
+
\log_x6&=\frac{1}{2} \\
&x^{\frac{1}{2}}=6 \\
+
x^{\frac{1}{2}}&=6 \\
&x=36
+
x&=36
 
\end{align*}
 
\end{align*}
 
so <math>\boxed{\textbf{(C) }36}</math>
 
so <math>\boxed{\textbf{(C) }36}</math>
 +
 +
~kafuu_chino
  
 
==Solution 2 (Change of Base)==
 
==Solution 2 (Change of Base)==

Revision as of 13:43, 14 November 2024

Problem

What value of $x$ satisfies \[\frac{\log_2x \cdot \log_3x}{\log_2x+\log_3x}=2?\]

$\textbf{(A) } 25 \qquad\textbf{(B) } 32 \qquad\textbf{(C) } 36 \qquad\textbf{(D) } 42 \qquad\textbf{(E) } 48$

Solution 1

We have \begin{align*} \log_2x\cdot\log_3x&=2(\log_2x+\log_3x) \\ 1&=\frac{2(\log_2x+\log_3x)}{\log_2x\cdot\log_3x} \\ 1&=2(\frac{1}{\log_3x}+\frac{1}{\log_2x}) \\ 1&=2(\log_x3+\log_x2) \\ \log_x6&=\frac{1}{2} \\ x^{\frac{1}{2}}&=6 \\ x&=36 \end{align*} so $\boxed{\textbf{(C) }36}$

~kafuu_chino

Solution 2 (Change of Base)

\begin{align*} \frac{\log_2x \cdot \log_3x}{\log_2x+\log_3x} &= 2 \\[6pt] \log_2x \cdot \log_3x &= 2(\log_2x+\log_3x) \\[6pt] \log_2x \cdot \log_3x &= 2\log_2x + 2\log_3x \\[6pt] \frac{\log x}{\log 2} \cdot \frac{\log x}{\log 3} &= 2\frac{\log x}{\log 2} + 2\frac{\log x}{\log 3} \\[6pt] \frac{(\log x)^2}{\log 2 \cdot \log 3} &= \frac{2\log x \cdot \log 3 + 2\log x \cdot \log 2}{\log 2 \cdot \log 3} \\[6pt] (\log x)^2 &= 2\log x \cdot \log 3 + 2\log x \cdot \log 2 \\[6pt] (\log x)^2 &= 2\log x(\log 2 + \log 3) \\[6pt] \log x &= 2(\log 2 + \log 3) \\[6pt] x &= 10^{2(\log 2 + \log 3)} \\[6pt] x &= (10^{\log 2} \cdot 10^{\log 3})^2 \\[6pt] x &= (2 \cdot 3)^2 = 6^2 = \boxed{\textbf{(C) }36} \end{align*}

~sourodeepdeb

See also

2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png