Difference between revisions of "2024 AMC 10B Problems/Problem 5"

(Solution 1)
Line 21: Line 21:
  
 
~numerophile
 
~numerophile
 +
 +
==Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)==
 +
 +
https://youtu.be/DIl3rLQQkQQ?feature=shared
 +
 +
~ Pi Academy
 +
  
 
==See also==
 
==See also==

Revision as of 09:59, 14 November 2024

The following problem is from both the 2024 AMC 10B #5 and 2024 AMC 12B #5, so both problems redirect to this page.

Problem

In the following expression, Melanie changed some of the plus signs to minus signs: \[1+3+5+7+...+97+99\] When the new expression was evaluated, it was negative. What is the least number of plus signs that Melanie could have changed to minus signs?

$\textbf{(A) } 14 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 16 \qquad\textbf{(D) } 17 \qquad\textbf{(E) } 18$

Solution 1

Recall that the sum of the first $n$ odd numbers is $n^2$. Thus \[1 + 3 + 5 + 7+ \dots + 97 + 99 = 50^2 = 2500.\]

If we want to minimize the number of sign flips to make the number negative, we must flip the signs corresponding to the values with largest absolute value. This will result in the inequality \[1 + 3 + 5 +\dots + (2n - 3) + (2n - 1) - (2n + 1) - (2n + 3)-\dots - 97 - 99 < 0.\]

The positive section of the sum will contribute $n^2$, and the negative section will contribute $-(2500-n^2) = (n^2 - 2500)$. The inequality simplifies to \[n^2 + (n^2 - 2500) < 0\] \[2n^2 < 2500\] \[n^2 < 1250\] The greatest positive value of $n$ satisfying the inequality is $n = 35$, corresponding to $35$ positive numbers, and $\boxed{\text{B. } 15}$ negatives.

~numerophile

Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)

https://youtu.be/DIl3rLQQkQQ?feature=shared

~ Pi Academy


See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png