Difference between revisions of "2024 AMC 10B Problems/Problem 24"

(Undo revision 233818 by Bloggish (talk))
(Tag: Undo)
(Problem 18)
Line 1: Line 1:
 
{{duplicate|[[2024 AMC 10B Problems/Problem 24|2024 AMC 10B #24]] and [[2024 AMC 12B Problems/Problem 18|2024 AMC 12B #18]]}}
 
{{duplicate|[[2024 AMC 10B Problems/Problem 24|2024 AMC 10B #24]] and [[2024 AMC 12B Problems/Problem 18|2024 AMC 12B #18]]}}
  
==Problem 18==
+
==Problem==
The Fibonacci numbers are defined by <math>F_1=1,</math> <math>F_2=1,</math> and <math>F_n=F_{n-1}+F_{n-2}</math> for <math>n\geq 3.</math> What is<cmath>\dfrac{F_2}{F_1}+\dfrac{F_4}{F_2}+\dfrac{F_6}{F_3}+\cdots+\dfrac{F_{20}}{F_{10}}?</cmath>
+
Let
<math>\textbf{(A) }318 \qquad\textbf{(B) }319\qquad\textbf{(C) }320\qquad\textbf{(D) }321\qquad\textbf{(E) }322</math>
+
<cmath>P(m)=\frac{m}{2}+\frac{m^2}{4}+\frac{m^4}{8}+\frac{m^8}{8}</cmath>
 +
How many of the values <math>P(2022)</math>, <math>P(2023)</math>, <math>P(2024)</math>, and <math>P(2025)</math> are integers?
 +
 
 +
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math>
  
 
==Solution 1==
 
==Solution 1==

Revision as of 05:53, 14 November 2024

The following problem is from both the 2024 AMC 10B #24 and 2024 AMC 12B #18, so both problems redirect to this page.

Problem

Let \[P(m)=\frac{m}{2}+\frac{m^2}{4}+\frac{m^4}{8}+\frac{m^8}{8}\] How many of the values $P(2022)$, $P(2023)$, $P(2024)$, and $P(2025)$ are integers?

$\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4$

Solution 1

The first $20$ terms $F_n = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765$

so the answer is $1 +  3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 =  \boxed{(B) 319}$.

~luckuso

Solution 2

Define new sequence \[G_n = \frac{F_{2n}}{F_{n}} = \frac{A^{2n} - B^{2n}}{A^{n} - B^{n}} =A^n+B^n\]

A= $\frac{1+\sqrt{5}}{2}$ and B = $\frac{1-\sqrt{5}}{2}$

Per characteristic equation, $G_n$ itself is also Fibonacci type sequence with starting item $G_{1}=1 , G_{2}=3$

then we can calculate the first 10 items using $G_{n}  =G_{n-1}  + G_{n-2}$

so the answer is $1 +  3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 =  \boxed{(B) 319}$.

~luckuso

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png