Difference between revisions of "2024 AMC 10B Problems/Problem 11"
(→Problem) |
(→Solution 1) |
||
Line 41: | Line 41: | ||
==Solution 1== | ==Solution 1== | ||
+ | We know that <math>WX = 4</math>, <math>WZ = 8</math>, so <math>YZ = 4</math> and <math>YX = 8</math>. Since <math>\angle WMA = 90^\circ</math>, triangles <math>WXM</math> and <math>MYA</math> are similar. Therefore, <math>\frac{WX}{MY} = \frac{XM}{YA}</math>, which gives <math>\frac{4}{8 - XM} = \frac{XM}{4 - ZA}</math>. We also know that the areas of triangles <math>WXM</math> and <math>WAZ</math> are equal, so <math>WX \cdot XM = WZ \cdot ZA</math>, which implies <math>4 \cdot XM = 8 \cdot ZA</math>. Substituting this into the previous equation, we get <math>\frac{4}{8 - 2ZA} = \frac{XM}{4 - ZA}</math>, yielding <math>ZA = 1</math> and <math>XM = 2</math>. Thus, | ||
+ | |||
+ | <cmath> | ||
+ | \triangle WMA = 4 \cdot 8 - \frac{4 \cdot 2}{2} - \frac{8 \cdot 1}{2} - \frac{6 \cdot 3}{2} = \boxed{\textbf{(B) }15} | ||
+ | </cmath> | ||
==See also== | ==See also== |
Revision as of 05:50, 14 November 2024
- The following problem is from both the 2024 AMC 10B #11 and 2024 AMC 12B #7, so both problems redirect to this page.
Problem
In the figure below is a rectangle with and . Point lies , point lies on , and is a right angle. The areas of and are equal. What is the area of ?
Solution 1
We know that , , so and . Since , triangles and are similar. Therefore, , which gives . We also know that the areas of triangles and are equal, so , which implies . Substituting this into the previous equation, we get , yielding and . Thus,
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 6 |
Followed by Problem 8 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.