Difference between revisions of "2024 AMC 10B Problems/Problem 18"
(→Solution 3) |
|||
Line 41: | Line 41: | ||
<cmath>{100 \choose 98} 5^2 n^{98} + {100 \choose 99} 5 n^{99} + {100 \choose 100} n^{100} \equiv 4950 \cdot 5^2 n^{98} + 100 \cdot 5 n^{99} + n^{100} \equiv n^{100} \pmod {125},</cmath> | <cmath>{100 \choose 98} 5^2 n^{98} + {100 \choose 99} 5 n^{99} + {100 \choose 100} n^{100} \equiv 4950 \cdot 5^2 n^{98} + 100 \cdot 5 n^{99} + n^{100} \equiv n^{100} \pmod {125},</cmath> | ||
− | so <math>(5+n)^{100} \equiv n^{100}</math>. Substituting <math>-n</math> for <math>n</math>, we get <math>(5-n)^{100} \equiv n^{100}</math>. Therefore, the remainders when divided by <math>125</math> repeat every <math>5</math> integers, so we only need to check the <math>100</math>th powers of <math>0, 1, 2, 3, 4</math>. But we have that <math>1 | + | so <math>(5+n)^{100} \equiv n^{100}</math>. Substituting <math>-n</math> for <math>n</math>, we get <math>(5-n)^{100} \equiv n^{100}</math>. Therefore, the remainders when divided by <math>125</math> repeat every <math>5</math> integers, so we only need to check the <math>100</math>th powers of <math>0, 1, 2, 3, 4</math>. But we have that <math>(5-1)^{100} \equiv 1^{100}</math> and <math>(5-2)^{100} \equiv 2^{100}</math> give the same remainder, so we really only need to check <math>0, 1, 2</math>. We know that <math>0, 1</math> produce different remainders, so the answer to the problem is either <math>2</math> or <math>3</math>. But <math>3</math> is not an answer choice, so the answer is <math>\textbf{(B) } 2</math>. |
− | |||
==See also== | ==See also== |
Revision as of 03:21, 14 November 2024
- The following problem is from both the 2024 AMC 10B #18 and 2024 AMC 12B #14, so both problems redirect to this page.
Problem
How many different remainders can result when the th power of an integer is divided by ?
Solution 1
First note that the totient function of is . We can set up two cases, which depend on whether a number is relatively prime to .
If is relatively prime to , then because of Euler's Totient Theorem.
If is not relatively prime to , it must be have a factor of . Express as , where is some integer. Then .
Therefore, can only be congruent to or . Our answer is .
~lprado
Solution 2 (Euler Totient)
We split the cases into:
1. If x is not a multiple of 5: we get
2. If x is a multiple of 125: Clearly the only remainder provides 0
Therefore, the remainders can only be 1 and 0, which gives the answer .
~mitsuihisashi14
Solution 3
Note that
Taking this mod , we can ignore most of the terms except the for the last :
so . Substituting for , we get . Therefore, the remainders when divided by repeat every integers, so we only need to check the th powers of . But we have that and give the same remainder, so we really only need to check . We know that produce different remainders, so the answer to the problem is either or . But is not an answer choice, so the answer is .
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.