Difference between revisions of "2024 AMC 10B Problems/Problem 18"

(Solution 2 (Euler Totient))
Line 30: Line 30:
  
 
~mitsuihisashi14
 
~mitsuihisashi14
 +
 +
==Solution 3==
 +
 +
Note that
 +
 +
<cmath>(5+n)^{100} = {100 \choose 0} 5^{100} + {100 \choose 1} 5^{99} n + {100 \choose 2} 5^{98} n^2 + \cdots + {100 \choose 97} 5^3 n^{97} + {100 \choose 98} 5^2 n^{98} + {100 \choose 99} 5 n^{99} + {100 \choose 100} n^{100}.</cmath>
 +
 +
Taking this mod <math>125</math>, we can ignore most of the terms except the for the last <math>3</math>:
 +
 +
<cmath>{100 \choose 98} 5^2 n^{98} + {100 \choose 99} 5 n^{99} + {100 \choose 100} n^{100} \equiv 4950 \cdot 5^2 n^{98} + 100 \cdot 5 n^{99} + n^{100} \equiv n^{100} \pmod {125},</cmath>
 +
 +
so <math>(5+n)^{100} \equiv n^{100}</math>. Substituting <math>-n</math> for <math>n</math>, we get <math>(5-n)^{100} \equiv n^{100}</math>. Therefore, the remainders when divided by <math>125</math> repeat every <math>5</math> integers, so we only need to check the <math>100</math>th powers of <math>0, 1, 2, 3, 4</math>. But we have that <math>1, 4</math> and <math>2, 3</math> give the same remainder, so we really only need to check <math>0, 1, 2</math>. We know that <math>0, 1</math> produce different remainders, so the answer to the problem is either <math>2</math> or <math>3</math>. But <math>3</math> is not an answer choice, so the answer is <math>\textbf{(B) } 2</math>.
 +
  
 
==See also==
 
==See also==

Revision as of 03:20, 14 November 2024

The following problem is from both the 2024 AMC 10B #18 and 2024 AMC 12B #14, so both problems redirect to this page.

Problem

How many different remainders can result when the $100$th power of an integer is divided by $125$?

$\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 125$

Solution 1

First note that the totient function of $125$ is $100$. We can set up two cases, which depend on whether a number is relatively prime to $125$.

If $n$ is relatively prime to $125$, then $n^{100} \equiv 1 \pmod{125}$ because of Euler's Totient Theorem.

If $n$ is not relatively prime to $125$, it must be have a factor of $5$. Express $n$ as $5m$, where $m$ is some integer. Then $n^{100} \equiv (5m)^{100} \equiv 5^{100}\cdot m^{100} \equiv 125 \cdot 5^{97} \cdot m^{100} \equiv 0 \pmod{125}$.

Therefore, $n^{100}$ can only be congruent to $0$ or $1 \pmod{125}$. Our answer is $\boxed{2}$.

~lprado

Solution 2 (Euler Totient)

We split the cases into:

1. If x is not a multiple of 5: we get $x^{100} \equiv 1 \pmod{125}$

2. If x is a multiple of 125: Clearly the only remainder provides 0

Therefore, the remainders can only be 1 and 0, which gives the answer $\boxed{(B)2}$.

~mitsuihisashi14

Solution 3

Note that

\[(5+n)^{100} = {100 \choose 0} 5^{100} + {100 \choose 1} 5^{99} n + {100 \choose 2} 5^{98} n^2 + \cdots + {100 \choose 97} 5^3 n^{97} + {100 \choose 98} 5^2 n^{98} + {100 \choose 99} 5 n^{99} + {100 \choose 100} n^{100}.\]

Taking this mod $125$, we can ignore most of the terms except the for the last $3$:

\[{100 \choose 98} 5^2 n^{98} + {100 \choose 99} 5 n^{99} + {100 \choose 100} n^{100} \equiv 4950 \cdot 5^2 n^{98} + 100 \cdot 5 n^{99} + n^{100} \equiv n^{100} \pmod {125},\]

so $(5+n)^{100} \equiv n^{100}$. Substituting $-n$ for $n$, we get $(5-n)^{100} \equiv n^{100}$. Therefore, the remainders when divided by $125$ repeat every $5$ integers, so we only need to check the $100$th powers of $0, 1, 2, 3, 4$. But we have that $1, 4$ and $2, 3$ give the same remainder, so we really only need to check $0, 1, 2$. We know that $0, 1$ produce different remainders, so the answer to the problem is either $2$ or $3$. But $3$ is not an answer choice, so the answer is $\textbf{(B) } 2$.


See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png