Difference between revisions of "2024 AMC 10B Problems/Problem 24"
(→Solution) |
|||
Line 3: | Line 3: | ||
==Problem== | ==Problem== | ||
− | ==Solution== | + | ==Solution #1== |
+ | Let x,y,z be 3 sides of triangle, r = <math>\frac{s}{p} </math>, 2p = x+y+z , 2s = ax=by=cz =2pr | ||
+ | <cmath>s= rs( \frac{1}{a} + \frac{1}{b} +\frac{1}{c} ) </cmath> | ||
+ | <cmath> r( \frac{1}{a} + \frac{1}{b} +\frac{1}{c} ) = 1 </cmath> | ||
+ | <cmath>r =1,2,3 </cmath> | ||
+ | case r=1: | ||
+ | <cmath>( \frac{1}{a} + \frac{1}{b} +\frac{1}{c} ) = 1 </cmath> | ||
+ | given that 1<=a<=b<=c<=9 | ||
+ | <cmath> 1 = ( \frac{1}{a} + \frac{1}{b} +\frac{1}{c} ) <= \frac{3}{a} </cmath> | ||
+ | <cmath> a <= 3 </cmath> | ||
+ | case 1.1 no solution for b,c <cmath> a= 2 , ( \frac{1}{2} + \frac{1}{b} +\frac{1}{c} ) = 1 </cmath> | ||
+ | case 1.2 <cmath> a= 3 , ( \frac{1}{3} + \frac{1}{b} +\frac{1}{c} ) = 1 , (b,c) =(3,3) </cmath> | ||
+ | case r=2: | ||
+ | <cmath>( \frac{1}{a} + \frac{1}{b} +\frac{1}{c} ) = \frac{1}{2} </cmath> | ||
+ | <cmath> (a,b,c) =(6,6,6) </cmath> | ||
+ | case r=3: | ||
+ | <cmath>( \frac{1}{a} + \frac{1}{b} +\frac{1}{c} ) = \frac{1}{3} </cmath> | ||
+ | <cmath> (a,b,c) =(9,9,9) </cmath> | ||
+ | answer <math>\boxed{\textbf{(B) } 3}</math> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
==See also== | ==See also== |
Revision as of 01:41, 14 November 2024
- The following problem is from both the 2024 AMC 10B #24 and 2024 AMC 12B #18, so both problems redirect to this page.
Problem
Solution #1
Let x,y,z be 3 sides of triangle, r = , 2p = x+y+z , 2s = ax=by=cz =2pr case r=1: given that 1<=a<=b<=c<=9 case 1.1 no solution for b,c case 1.2 case r=2: case r=3: answer
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.