Difference between revisions of "2024 AMC 12B Problems/Problem 20"
(→Solution 4 (Apollonius)) |
|||
Line 112: | Line 112: | ||
~xHypotenuse | ~xHypotenuse | ||
+ | |||
+ | |||
+ | ==Solution 5:== | ||
==Video Solution by SpreadTheMathLove== | ==Video Solution by SpreadTheMathLove== |
Revision as of 01:18, 20 December 2024
Contents
Problem 20
Suppose , , and are points in the plane with and , and let be the length of the line segment from to the midpoint of . Define a function by letting be the area of . Then the domain of is an open interval , and the maximum value of occurs at . What is ?
Solution 1
Let the midpoint of be , and let the length . We know there are limits to the value of , and these limits can probably be found through the triangle inequality. But the triangle inequality relates the third side length to and , and doesn't contain any information about the median. Therefore we're going to have to write the side in terms of and then use the triangle inequality to find bounds on .
We use Stewart's theorem to relate to the median : . In this case , , , , , .
Therefore we get the equation
.
Notice that since is a pythagorean triple, this means .
By triangle inequality, and
Let's tackle the first inequality:
Here we use the property that .
Therefore in this case, .
For the second inequality,
Therefore we have , so the domain of is .
The area of this triangle is . The maximum value of the area occurs when the triangle is right, i.e. . Then the area is . The length of the median of a right triangle is half the length of it's hypotenuse, which squared is . Thus the length of is .
Our final answer is
~KingRavi
Solution 2 (Geometry)
Let midpoint of as , extends to and ,
triangle has sides , based on triangle inequality, so
so which is achieved when , then
Solution 3 (Trigonometry)
Let A = (0, 0) , B =(b, 0) , C= ()
When :
When : The domain of is the open interval:
The rest follows Solution 2
Solution 4 (Apollonius)
Here's a faster way to solve this problem using Apollonius's Theorem (which is a special case of Stewart's Theorem for medians). In this case, . So,
We know that, by the Triangle Inequality, . Applying these to Apollonius, we have that the minimum value of is and the maximum value is (both cannot be reached, however).
The rest of the solution follows Solution 1.
~xHypotenuse
Solution 5:
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=aDajQGay0TQ
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.