Difference between revisions of "2024 AMC 12B Problems/Problem 21"

m
Line 30: Line 30:
  
 
~Prof. Joker
 
~Prof. Joker
 +
 +
==Solution 3 (Another Trig)==
 +
 +
Denote the smallest angle of the <math>3-4-5</math> triangle as <math>\alpha</math>, the smallest angle of the <math>5-12-13</math> triangle as <math>\beta</math>, and the smallest angle of the triangle we are trying to solve for as <math>\theta</math>. We then have
 +
<cmath>\alpha + \beta + \theta = 90</cmath>
 +
<cmath>\alpha + \beta = 90 - \theta</cmath>
 +
<cmath>\sin{(\alpha + \beta)} = \sin{(90 - \theta)} = \cos{\theta}</cmath>, so
 +
<cmath>\cos{\theta} = \sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta} = (\frac{3}{5})(\frac{12}{13}) + (\frac{4}{5})(\frac{5}{13}) = \frac{56}{65}</cmath>
 +
Taking the hypotenuse to be <math>65</math> and one of the legs to be <math>56</math>, we compute the last leg to be <math>\sqrt{65^2 - 56^2} = \sqrt{(65-56)(65+56)} = \sqrt{9*121} = 3*11 = 33</math>
 +
 +
Giving us a final answer of <math>65 + 56 + 33 = \boxed{\textbf{(C) }154}</math>.
 +
 +
~tkl
  
 
==Video Solution by Innovative Minds==
 
==Video Solution by Innovative Minds==

Revision as of 13:21, 14 November 2024

Problem

The measures of the smallest angles of three different right triangles sum to $90^\circ$. All three triangles have side lengths that are primitive Pythagorean triples. Two of them are $3-4-5$ and $5-12-13$. What is the perimeter of the third triangle?

$\textbf{(A) } 40 \qquad\textbf{(B) } 126 \qquad\textbf{(C) } 154 \qquad\textbf{(D) } 176 \qquad\textbf{(E) } 208$

Solution 1

Let $\alpha$ and $\beta$ be the smallest angles of the $3-4-5$ and $5-12-13$ triangles respectively. We have \[\tan(\alpha)=\frac{3}{4} \text{ and } \tan(\beta)=\frac{5}{12}\] Then \[\tan(\alpha+\beta)=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4}\cdot\frac{5}{12}}=\frac{56}{33}\] Let $\theta$ be the smallest angle of the third triangle. Consider \[\tan{90^\circ}=\tan((\alpha+\beta)+\theta)=\frac{\frac{56}{33}+\tan{\theta}}{1-\frac{56}{33}\cdot\tan{\theta}}\] In order for this to be undefined, we need \[1-\frac{56}{33}\cdot\tan{\theta}=0\] so \[\tan{\theta}=\frac{33}{56}\] Hence the base side lengths of the third triangle are $33$ and $56$. By the Pythagorean Theorem, the hypotenuse of the third triangle is $65$, so the perimeter is $33+56+65=\boxed{\textbf{(C) }154}$.

~kafuu_chino

Solution 2 (Complex Number)

The smallest angle of $3-4-5$ triangle can be viewed as the arguement of $4+3i$, and the smallest angle of $5-12-13$ triangle can be viewed as the arguement of $12+5i$.

Hence, if we assume the ratio of the two shortest length of the last triangle is $1:k$ ($k$ being some rational number), then we can derive the following formula of the sum of their arguement. Since their arguement adds up to $\frac{\pi}{2}$, it's the arguement of $i$. Hence, \[\left(4+3i\right)\left(5+12i\right)\left(k+i\right)=ni\,,\] where $n$ is some real number.

Solving the equation, we get \[56k-33=0\,,\quad 33k+56=n\,.\] Hence $k=\frac{33}{56}$

Since the sidelength of the theird triangle are co-prime integers, two of its sides are $33$ and $56$. And the last side is $\sqrt{33^2+56^2}=65$, hence, the parameter of the third triangle if $33+56+65=\boxed{\mathbf{(C)}\,154}$.

~Prof. Joker

Solution 3 (Another Trig)

Denote the smallest angle of the $3-4-5$ triangle as $\alpha$, the smallest angle of the $5-12-13$ triangle as $\beta$, and the smallest angle of the triangle we are trying to solve for as $\theta$. We then have \[\alpha + \beta + \theta = 90\] \[\alpha + \beta = 90 - \theta\] \[\sin{(\alpha + \beta)} = \sin{(90 - \theta)} = \cos{\theta}\], so \[\cos{\theta} = \sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta} = (\frac{3}{5})(\frac{12}{13}) + (\frac{4}{5})(\frac{5}{13}) = \frac{56}{65}\] Taking the hypotenuse to be $65$ and one of the legs to be $56$, we compute the last leg to be $\sqrt{65^2 - 56^2} = \sqrt{(65-56)(65+56)} = \sqrt{9*121} = 3*11 = 33$

Giving us a final answer of $65 + 56 + 33 = \boxed{\textbf{(C) }154}$.

~tkl

Video Solution by Innovative Minds

https://youtu.be/9PMdtwkKTlU

See also

2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png