Difference between revisions of "2024 AMC 10B Problems/Problem 18"

(Solution 2)
Line 22: Line 22:
  
 
1. If x is not a multiple of 5:
 
1. If x is not a multiple of 5:
we get x^100\equiv 1 (mod 125)
+
we get <math>x^{100} \equiv 1 \pmod{125}</math>
  
 
2. If x is a multiple of 125:
 
2. If x is a multiple of 125:

Revision as of 01:39, 14 November 2024

The following problem is from both the 2024 AMC 10B #18 and 2024 AMC 12B #14, so both problems redirect to this page.

Problem

How many different remainders can result when the $100$th power of an integer is divided by $125$?

$\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 125$

Solution 1

First note that the totient function of $125$ is $100$. We can set up two cases, which depend on whether a number is relatively prime to $125$.

If $n$ is relatively prime to $125$, then $n^{100} \equiv 1 \pmod{125}$ because of Euler's Totient Theorem.

If $n$ is not relatively prime to $125$, it must be have a factor of $5$. Express $n$ as $5m$, where $m$ is some integer. Then $n^{100} \equiv (5m)^{100} \equiv 5^{100}\cdot m^{100} \equiv 125 \cdot 5^{97} \cdot m^{100} \equiv 0 \pmod{125}$.

Therefore, $n^{100}$ can only be congruent to $0$ or $1 \pmod{125}$. Our answer is $\boxed{2}$.

~lprado

Solution 2

We split the cases into:

1. If x is not a multiple of 5: we get $x^{100} \equiv 1 \pmod{125}$

2. If x is a multiple of 125: Clearly the only remainder provides 0

Therefore, the remainders can only be 1 and 0, which gives the answer (B)2

~mitsuihisashi14

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png