Difference between revisions of "2024 AMC 10B Problems/Problem 3"

m (Protected "2024 AMC 10B Problems/Problem 3" ([Edit=Allow only administrators] (expires 04:59, 14 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 14 November 2024 (UTC))))
Line 1: Line 1:
 +
{{duplicate|[[2024 AMC 10B Problems/Problem 3|2024 AMC 10B #3]] and [[2024 AMC 12B Problems/Problem 3|2024 AMC 12B #3]]}}
  
 +
==Problem==
 +
For how many integer values of <math>x</math> is <math>|2x| \leq 7 \pi</math>
 +
 +
<math>\textbf{(A) } 16 \qquad\textbf{(B) } 17 \qquad\textbf{(C) } 19 \qquad\textbf{(D) } 20 \qquad\textbf{(E) } 21</math>
 +
 +
==Solution 1==
 +
<math>\pi</math> is approximately <math>\dfrac{22}{7}</math>. So <math>7\pi = 7 \cdot \dfrac{22}{7} = 22</math>
 +
(Keep on going)
 +
 +
==See also==
 +
{{AMC10 box|year=2024|ab=B|num-b=2|num-a=4}}
 +
{{AMC12 box|year=2024|ab=B|num-b=2|num-a=4}}
 +
{{MAA Notice}}

Revision as of 00:26, 14 November 2024

The following problem is from both the 2024 AMC 10B #3 and 2024 AMC 12B #3, so both problems redirect to this page.

Problem

For how many integer values of $x$ is $|2x| \leq 7 \pi$

$\textbf{(A) } 16 \qquad\textbf{(B) } 17 \qquad\textbf{(C) } 19 \qquad\textbf{(D) } 20 \qquad\textbf{(E) } 21$

Solution 1

$\pi$ is approximately $\dfrac{22}{7}$. So $7\pi = 7 \cdot \dfrac{22}{7} = 22$ (Keep on going)

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png