Difference between revisions of "1971 AHSME Problems/Problem 28"

(created solution page)
 
(diagram)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
 +
 +
<asy>
 +
 +
import geometry;
 +
 +
point B = origin;
 +
point A = (3,5);
 +
point C = (7,0);
 +
triangle t = triangle(A,B,C);
 +
 +
point D = B*9/10 + A/10;
 +
point E;
 +
 +
// Defining point E
 +
pair[] e = intersectionpoints(parallel(D,line(B,C)),A--C);
 +
E = e[0];
 +
 +
// Triangle ABC and Parallel Segment
 +
draw(t);
 +
draw(D--E);
 +
 +
// Point Labels
 +
dot(A);
 +
label("A",A,NW);
 +
dot(B);
 +
label("B",B,SW);
 +
dot(C);
 +
label("C",C,SE);
 +
dot(D);
 +
label("D",D,NW);
 +
dot(E);
 +
label("E",E,NE);
 +
 +
</asy>
  
 
<math>\boxed{\textbf{(C) }200}</math>.
 
<math>\boxed{\textbf{(C) }200}</math>.

Revision as of 10:51, 7 August 2024

Problem

Nine lines parallel to the base of a triangle divide the other sides each into $10$ equal segments and the area into $10$ distinct parts. If the area of the largest of these parts is $38$, then the area of the original triangle is

$\textbf{(A) }180\qquad \textbf{(B) }190\qquad \textbf{(C) }200\qquad \textbf{(D) }210\qquad  \textbf{(E) }240$

Solution

[asy]  import geometry;  point B = origin; point A = (3,5); point C = (7,0); triangle t = triangle(A,B,C);  point D = B*9/10 + A/10; point E;  // Defining point E pair[] e = intersectionpoints(parallel(D,line(B,C)),A--C); E = e[0];  // Triangle ABC and Parallel Segment draw(t); draw(D--E);  // Point Labels dot(A); label("A",A,NW); dot(B); label("B",B,SW); dot(C); label("C",C,SE); dot(D); label("D",D,NW); dot(E); label("E",E,NE);  [/asy]

$\boxed{\textbf{(C) }200}$.

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 27
Followed by
Problem 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png