Difference between revisions of "2024 AMC 10B Problems/Problem 23"

(Created page with "Bro thought he was tuff trying to leak the AMC")
 
(Solution 3a (Generic Lucas Sequence Sum Formula))
 
(49 intermediate revisions by 13 users not shown)
Line 1: Line 1:
Bro thought he was tuff trying to leak the AMC
+
{{duplicate|[[2024 AMC 10B Problems/Problem 24|2024 AMC 10B #23]] and [[2024 AMC 12B Problems/Problem 18|2024 AMC 12B #18]]}}
 +
 
 +
==Problem==
 +
The Fibonacci numbers are defined by <math>F_1 = 1, F_2 = 1,</math> and <math>F_n = F_{n-1} + F_{n-2}</math> for <math>n \geq 3.</math> What is <cmath>{\frac{F_2}{F_1}} + {\frac{F_4}{F_2}} + {\frac{F_6}{F_3}} + ... + {\frac{F_{20}}{F_{10}}}?</cmath>
 +
<math>\textbf{(A) } 318 \qquad\textbf{(B) } 319 \qquad\textbf{(C) } 320 \qquad\textbf{(D) } 321 \qquad\textbf{(E) } 322</math>
 +
 
 +
==Solution 1 (Bash)==
 +
The first <math>20</math> terms are <math>F_n = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765</math>
 +
 
 +
So the answer is <math>1 +  3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 =  \boxed{(B) 319} </math>.
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso]
 +
 
 +
==Solution 2 (Pattern)==
 +
Plug in a few numbers to see if there is a pattern. List out a few Fibonacci numbers, and then try them on the equation. You'll find that <math>{\frac{F_2}{F_1}} = {\frac{1}{1}} = 1, {\frac{F_4}{F_2}} = {\frac{3}{1}} = 3, {\frac{F_6}{F_3}} = {\frac{8}{2}} = 4,</math> and <math>{\frac{F_8}{F_4}} = {\frac{21}{3}} = 7.</math> The pattern is that then ten fractions are in their own leapfrog sequence with the starting two terms being <math>1</math> and <math>3</math>, which can be written as <math>G_1 = 1, G_2 = 3, G_n = G_{n-1} + G_{n-2}</math> for <math>n \geq 3.</math> The problem is asking for the sum of the ten terms <math>G_1 + G_2 + G_3 + ... + G_{10}</math>, and after adding up the first ten terms <math>1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123</math>, you arrive at the solution <math>\boxed{\textbf{(B) }319}.</math>
 +
 
 +
~Cattycute
 +
 
 +
Note: The first ten terms (<math>1+3+4+7+...+76+123</math>) are actually part of a sequence called the Lucas numbers.
 +
 
 +
~NXC
 +
 
 +
==Solution 3 (Characteristic Equation and Recurrence Relationship) ==
 +
 
 +
Using characteristic equation <math>x^2=x+1</math> and starting terms <math>F_1 =1, F_2=1</math>, we get <math>F_n=\frac{1}{\sqrt{5}} (A^n- B^n) </math>, A= <math>\frac{1+\sqrt{5}}{2}</math> , B = <math>\frac{1-\sqrt{5}}{2}</math>
 +
 
 +
Define a new sequence (this is actually a Lucas sequence) <cmath>  L_n = \frac{F_{2n}}{F_{n}} = \frac{A^{2n} - B^{2n}}{A^{n} - B^{n}} =A^n+B^n </cmath>
 +
 
 +
Given that <math>L_n</math> has the same 2 roots (A,B) as the characteristic equation <math>x^2=x+1</math> it implies that <math>  L_{n}  =L_{n-1}  + L_{n-2} </math>. It can also be verified below.
 +
Noticing <math> A^2 = A + 1 </math> and <math> B^2 = B + 1 </math>,
 +
Therefore,
 +
<cmath>
 +
L_n = A^n + B^n  =  A^2 \cdot A^{n-2} + B^2 \cdot B^{n-2}  =  (A +1) \cdot A^{n-2} + (B+1) \cdot B^{n-2} = (A^{n-1} + B^{n-1}) + (A^{n-2} + B^{n-2}) = L_{n-1} + L_{n-2} .
 +
</cmath>
 +
 
 +
Calculating the first 10 terms using the recurrence relation <math>  L_{n}  =L_{n-1}  + L_{n-2} </math> and the initial values <math> L_1 = 1 </math> and <math> L_2 = 3 </math>, we get:
 +
<cmath>
 +
L_1 = 1, \quad L_2 = 3, \quad L_3 = 4, \quad L_4 = 7, \quad L_5 = 11 </cmath>
 +
 
 +
<cmath>\quad L_6 = 18, \quad L_7 = 29, \quad L_8 = 47, \quad L_9 = 76, \quad L_{10} = 123
 +
</cmath>
 +
 
 +
So the answer is <math> 1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 =  \boxed{(B) 319} </math>.
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso]
 +
 
 +
==Solution 3a (Generic Lucas Sequence Sum Formula) ==
 +
 +
<cmath>
 +
S_k = \sum_{n=1}^{k} L_n = \sum_{n=1}^{k} (A^n + B^n) = \sum_{n=1}^{k} A^n + \sum_{n=1}^{k} B^n = \frac{A(1 - A^k)}{1 - A} + \frac{B(1 - B^k)}{1 - B}
 +
</cmath>
 +
 
 +
Recall the sum formula for a geometric series:
 +
<cmath>
 +
\sum_{n=1}^{k} r^n = r + r^2 + \cdots + r^k = \frac{r(1 - r^k)}{1 - r}, \quad \text{for } r \neq 1
 +
</cmath>
 +
 
 +
To simplify further, notice that:
 +
<math> A = \frac{1 + \sqrt{5}}{2} </math> and <math> B = \frac{1 - \sqrt{5}}{2} </math> are roots of <math> x^2 = x + 1 </math>, so:
 +
<cmath>
 +
1 - A = B \quad \text{and} \quad 1 - B = A.
 +
</cmath>
 +
 
 +
<cmath>
 +
S_k = \frac{A(1 - A^k)}{B} + \frac{B(1 - B^k)}{A} = \frac{A^{k+2} - A^2 + B^{k+2} - B^2}{A \cdot B}  =  \frac{A^{k+2}  + B^{k+2} -  (A^2+  B^2) }{A \cdot B}  = A^{k+2}  + B^{k+2} -3 = L_{n+2} - 3
 +
</cmath>
 +
 
 +
This formula <math>S_k =  A^{k+2}  + B^{k+2} - 3 </math> gives us a direct way to calculate the sum of <math> L_n </math> for any <math> k </math>.
 +
 
 +
<cmath>L_{2n} = (A^n + B^n)^2 - 2 \cdot (AB)^n = L_{n} - 2 \cdot (-1) ^n</cmath>
 +
<cmath>L_{2n+1} = (A^n + B^n)(A^{n+1} + B^{n+1}) -  (AB)^n(A+B) = L_{n}L_{n+1} - (-1)^n</cmath>
 +
 
 +
<cmath>L_{12} = (L_{6} )^2 -2 = (L_{3}^2 + 2 )^2 -2  = (4^2 + 2 )^2 - 2  = 324 - 2 = 322  </cmath>
 +
 
 +
Hence, <cmath>\sum_{n=1}^{10} = L_{12} -3 = 322 - 3 =  \boxed{(B) 319} </cmath>
 +
 
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso]
 +
 
 +
==Solution 4==
 +
 
 +
Remember that for any <math> n\ge0 </math>, <cmath> \frac{F_{2n}}{F_{n}} = L_{n} </cmath>
 +
 
 +
so the answer is <math> 1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 = \boxed{(B) 319} </math>.
 +
 
 +
~Apollo08 (first solution)
 +
 
 +
==Video Solution 1 by Pi Academy (In Less Than 3 Mins ⚡🚀)==
 +
 
 +
https://youtu.be/YjQ9Q93RCu4?feature=shared
 +
 
 +
~ Pi Academy
 +
 
 +
==Video Solution 2 by Innovative Minds==
 +
https://www.youtube.com/watch?v=7KEk5VbxwAU
 +
 
 +
==Video Solution 3 by SpreadTheMathLove==
 +
https://www.youtube.com/watch?v=24EZaeAThuE
 +
 
 +
==See also==
 +
{{AMC10 box|year=2024|ab=B|num-b=22|num-a=24}}
 +
{{AMC12 box|year=2024|ab=B|num-b=17|num-a=19}}
 +
{{MAA Notice}}

Latest revision as of 20:37, 17 November 2024

The following problem is from both the 2024 AMC 10B #23 and 2024 AMC 12B #18, so both problems redirect to this page.

Problem

The Fibonacci numbers are defined by $F_1 = 1, F_2 = 1,$ and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 3.$ What is \[{\frac{F_2}{F_1}} + {\frac{F_4}{F_2}} + {\frac{F_6}{F_3}} + ... + {\frac{F_{20}}{F_{10}}}?\] $\textbf{(A) } 318 \qquad\textbf{(B) } 319 \qquad\textbf{(C) } 320 \qquad\textbf{(D) } 321 \qquad\textbf{(E) } 322$

Solution 1 (Bash)

The first $20$ terms are $F_n = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765$

So the answer is $1 +  3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 =  \boxed{(B) 319}$.

~luckuso

Solution 2 (Pattern)

Plug in a few numbers to see if there is a pattern. List out a few Fibonacci numbers, and then try them on the equation. You'll find that ${\frac{F_2}{F_1}} = {\frac{1}{1}} = 1, {\frac{F_4}{F_2}} = {\frac{3}{1}} = 3, {\frac{F_6}{F_3}} = {\frac{8}{2}} = 4,$ and ${\frac{F_8}{F_4}} = {\frac{21}{3}} = 7.$ The pattern is that then ten fractions are in their own leapfrog sequence with the starting two terms being $1$ and $3$, which can be written as $G_1 = 1, G_2 = 3, G_n = G_{n-1} + G_{n-2}$ for $n \geq 3.$ The problem is asking for the sum of the ten terms $G_1 + G_2 + G_3 + ... + G_{10}$, and after adding up the first ten terms $1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123$, you arrive at the solution $\boxed{\textbf{(B) }319}.$

~Cattycute

Note: The first ten terms ($1+3+4+7+...+76+123$) are actually part of a sequence called the Lucas numbers.

~NXC

Solution 3 (Characteristic Equation and Recurrence Relationship)

Using characteristic equation $x^2=x+1$ and starting terms $F_1 =1, F_2=1$, we get $F_n=\frac{1}{\sqrt{5}} (A^n- B^n)$, A= $\frac{1+\sqrt{5}}{2}$ , B = $\frac{1-\sqrt{5}}{2}$

Define a new sequence (this is actually a Lucas sequence) \[L_n = \frac{F_{2n}}{F_{n}} = \frac{A^{2n} - B^{2n}}{A^{n} - B^{n}} =A^n+B^n\]

Given that $L_n$ has the same 2 roots (A,B) as the characteristic equation $x^2=x+1$ it implies that $L_{n}  =L_{n-1}  + L_{n-2}$. It can also be verified below. Noticing $A^2 = A + 1$ and $B^2 = B + 1$, Therefore, \[L_n = A^n + B^n  =  A^2 \cdot A^{n-2} + B^2 \cdot B^{n-2}  =  (A +1) \cdot A^{n-2} + (B+1) \cdot B^{n-2} = (A^{n-1} + B^{n-1}) + (A^{n-2} + B^{n-2}) = L_{n-1} + L_{n-2} .\]

Calculating the first 10 terms using the recurrence relation $L_{n}  =L_{n-1}  + L_{n-2}$ and the initial values $L_1 = 1$ and $L_2 = 3$, we get: \[L_1 = 1, \quad L_2 = 3, \quad L_3 = 4, \quad L_4 = 7, \quad L_5 = 11\]

\[\quad L_6 = 18, \quad L_7 = 29, \quad L_8 = 47, \quad L_9 = 76, \quad L_{10} = 123\]

So the answer is $1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 =  \boxed{(B) 319}$.

~luckuso

Solution 3a (Generic Lucas Sequence Sum Formula)

\[S_k = \sum_{n=1}^{k} L_n = \sum_{n=1}^{k} (A^n + B^n) = \sum_{n=1}^{k} A^n + \sum_{n=1}^{k} B^n = \frac{A(1 - A^k)}{1 - A} + \frac{B(1 - B^k)}{1 - B}\]

Recall the sum formula for a geometric series: \[\sum_{n=1}^{k} r^n = r + r^2 + \cdots + r^k = \frac{r(1 - r^k)}{1 - r}, \quad \text{for } r \neq 1\]

To simplify further, notice that: $A = \frac{1 + \sqrt{5}}{2}$ and $B = \frac{1 - \sqrt{5}}{2}$ are roots of $x^2 = x + 1$, so: \[1 - A = B \quad \text{and} \quad 1 - B = A.\]

\[S_k = \frac{A(1 - A^k)}{B} + \frac{B(1 - B^k)}{A} = \frac{A^{k+2} - A^2 + B^{k+2} - B^2}{A \cdot B}  =  \frac{A^{k+2}  + B^{k+2} -   (A^2+  B^2) }{A \cdot B}  = A^{k+2}  + B^{k+2} -3 = L_{n+2} - 3\]

This formula $S_k =  A^{k+2}  + B^{k+2} - 3$ gives us a direct way to calculate the sum of $L_n$ for any $k$.

\[L_{2n} = (A^n + B^n)^2 - 2 \cdot (AB)^n = L_{n} - 2 \cdot (-1) ^n\] \[L_{2n+1} = (A^n + B^n)(A^{n+1} + B^{n+1}) -  (AB)^n(A+B) = L_{n}L_{n+1} - (-1)^n\]

\[L_{12} = (L_{6} )^2 -2 = (L_{3}^2 + 2 )^2 -2  = (4^2 + 2 )^2 - 2  = 324 - 2 = 322\]

Hence, \[\sum_{n=1}^{10} = L_{12} -3 = 322 - 3 =  \boxed{(B) 319}\]


~luckuso

Solution 4

Remember that for any $n\ge0$, \[\frac{F_{2n}}{F_{n}} = L_{n}\]

so the answer is $1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 = \boxed{(B) 319}$.

~Apollo08 (first solution)

Video Solution 1 by Pi Academy (In Less Than 3 Mins ⚡🚀)

https://youtu.be/YjQ9Q93RCu4?feature=shared

~ Pi Academy

Video Solution 2 by Innovative Minds

https://www.youtube.com/watch?v=7KEk5VbxwAU

Video Solution 3 by SpreadTheMathLove

https://www.youtube.com/watch?v=24EZaeAThuE

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png