Difference between revisions of "2024 AMC 12B Problems/Problem 19"
(Created blank page) |
Magnetoninja (talk | contribs) (→Solution 3 (No Trig Manipulations)) |
||
(21 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
+ | ==Problem 19== | ||
+ | Equilateral <math>\triangle ABC</math> with side length <math>14</math> is rotated about its center by angle <math>\theta</math>, where <math>0 < \theta < 60^{\circ}</math>, to form <math>\triangle DEF</math>. See the figure. The area of hexagon <math>ADBECF</math> is <math>91\sqrt{3}</math>. What is <math>\tan\theta</math>? | ||
+ | <asy> | ||
+ | // Credit to shihan for this diagram. | ||
+ | defaultpen(fontsize(13)); size(200); | ||
+ | pair O=(0,0),A=dir(225),B=dir(-15),C=dir(105),D=rotate(38.21,O)*A,E=rotate(38.21,O)*B,F=rotate(38.21,O)*C; | ||
+ | draw(A--B--C--A,gray+0.4);draw(D--E--F--D,gray+0.4); draw(A--D--B--E--C--F--A,black+0.9); dot(O); dot("$A$",A,dir(A)); dot("$B$",B,dir(B)); dot("$C$",C,dir(C)); dot("$D$",D,dir(D)); dot("$E$",E,dir(E)); dot("$F$",F,dir(F)); | ||
+ | </asy> | ||
+ | |||
+ | <math>\textbf{(A)}~\frac{3}{4}\qquad\textbf{(B)}~\frac{5\sqrt{3}}{11}\qquad\textbf{(C)}~\frac{4}{5}\qquad\textbf{(D)}~\frac{11}{13}\qquad\textbf{(E)}~\frac{7\sqrt{3}}{13}</math> | ||
+ | |||
+ | ==Solution 1== | ||
+ | Let O be circumcenter of the equilateral triangle | ||
+ | |||
+ | Easily get <math>OF = \frac{14\sqrt{3}}{3}</math> | ||
+ | |||
+ | <math>2 \cdot \triangle(OFC) + \triangle(OCE) = OF^2 \cdot \sin(\theta) + OF^2 \cdot \sin(120 - \theta)</math> | ||
+ | <cmath> = \frac{14^2 \cdot 3}{9} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | ||
+ | <cmath> = \frac{196}{3} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | ||
+ | <cmath> = 2 \cdot {\frac{1}{3} } \cdot(ABCDEF) = 2\cdot \frac{91\sqrt{3}}{3} </cmath> | ||
+ | |||
+ | <cmath> \sin(\theta) + \sin(120 - \theta) = \frac{13\sqrt{3}}{14} </cmath> | ||
+ | <cmath> \sin(\theta) + \frac{ \sqrt{3}}{2}\cos( \theta) +\frac{ \sqrt{1}}{2}\sin( \theta) = \frac{13\sqrt{3}}{14} </cmath> | ||
+ | <cmath> \sqrt{3} \sin( \theta) + \cos( \theta) = \frac{13 }{7} </cmath> | ||
+ | <cmath> \cos( \theta) = \frac{13 }{7} - \sqrt{3} \sin( \theta) </cmath> | ||
+ | <cmath> \frac{169 }{49} - \frac{26\sqrt{3} }{7} \sin( \theta) + 4 \sin( \theta)^2 = 1 </cmath> | ||
+ | <cmath> \sin( \theta) = \frac{5\sqrt{3} }{14} or \frac{4\sqrt{3} }{7} </cmath> | ||
+ | <math>\frac{4\sqrt{3} }{7} </math> is invalid given <math>\theta \leq 60^\circ </math> , <math>\sin(\theta ) < \sin( 60^\circ ) = \frac{\sqrt{3} }{2} = \frac{\sqrt{3} \cdot 3.5}{7} </math> | ||
+ | <cmath> \cos( \theta) = \frac{11 }{14} </cmath> | ||
+ | <cmath> \tan( \theta) = \frac{5\sqrt{3} }{11} \boxed{B } </cmath> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
+ | |||
+ | ==Solution #2== | ||
+ | From <math>\triangle ABC</math>'s side lengths of 14, we get | ||
+ | <cmath>OF = OC = OE = \frac{14\sqrt{3}}{3}.</cmath> | ||
+ | We let <math>\angle FOC = \theta</math> | ||
+ | And <math>\angle EOC = 120 - \theta</math> | ||
+ | |||
+ | The answer would be <math>3([\triangle FOC] + [\triangle COE])</math> | ||
+ | |||
+ | Which area <math>\triangle FOC</math> = <math>\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(\theta)</math> | ||
+ | |||
+ | And area <math>\triangle COE</math> = <math>\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(120 - \theta)</math> | ||
+ | |||
+ | So we have that | ||
+ | <cmath>3\cdot \frac{1}{2}\cdot \left(\frac{14\sqrt{3}}{3}\right)^2 (\sin(\theta)+\sin(120 - \theta)) = 91\sqrt{3}</cmath> | ||
+ | |||
+ | Which means | ||
+ | <cmath>\sin(\theta)+\sin(120 - \theta) = \frac{91\sqrt{3}}{98}</cmath> | ||
+ | <cmath>\frac{1}{2}\cos(\theta)+\frac{\sqrt{3}}{2}\sin(\theta) = \frac{91}{98}</cmath> | ||
+ | <cmath>\sin(\theta + 30) = \frac{91}{98}</cmath> | ||
+ | <cmath>\cos (\theta + 30) = \frac{21\sqrt{3}}{98}</cmath> | ||
+ | <cmath>\tan(\theta + 30) = \frac{91}{21\sqrt{3}} = \frac{91\sqrt{3}}{63}</cmath> | ||
+ | |||
+ | Now, <math>\tan(\theta)</math> can be calculated using the addition identity, which gives the answer of | ||
+ | |||
+ | <cmath>\boxed{\text{(B) }\frac{5\sqrt{3}}{11}}.</cmath> | ||
+ | |||
+ | ~mitsuihisashi14 | ||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] (fixed Latex error ) | ||
+ | |||
+ | ==Solution 3 (No Trig Manipulations)== | ||
+ | |||
+ | Let the circumcenter of the circle inscribing this polygon be <math>O</math>. The area of the equilateral triangle is <math>\frac{\sqrt{3}}{4}*196=49\sqrt{3}</math>. The area of one of the three smaller triangles, say <math>\triangle{DBE}</math> is <math>14\sqrt{3}</math>. Let <math>BH</math> be the altitude of <math>\triangle{DBE}</math>, so if we extend <math>BH</math> to point <math>M</math> where <math>MO\perp{BM}</math>, we get right triangle <math>\triangle{OMB}</math>. Note that the height <math>BH=2\sqrt{3}</math>, computed given the area and side length <math>14</math>, so <math>MB=BH+HB=2\sqrt{3}+\frac{7\sqrt{3}}{3}=\frac{13\sqrt{3}}{3}</math>. <math>OB=\frac{14\sqrt{3}}{3}</math> so Pythag gives <math>OM=\sqrt{OB^2-MB^2}=3</math>. This means that <math>HE=7-OM=4</math>, so Pythag gives <math>BE=2\sqrt{7}</math>. Let <math>\frac{\theta}{2}=\alpha</math> and the midpoint of <math>BE</math> be <math>P</math> so that <math>BP=PE=\sqrt{7}</math>, so that Pythag on <math>\triangle{OPE}</math> gives <math>OP=\sqrt{OE^2-PE^2}=\sqrt{\frac{175}{3}}</math>. Then <math>\tan{\alpha}=\frac{\sqrt{\frac{175}{3}}}{\sqrt{7}}=\frac{\sqrt{3}}{5}</math>. Then <math>\tan{2\alpha}=\tan{\theta}=\frac{\frac{2\sqrt{3}}{5}}{1-\frac{3}{25}}=\boxed{\frac{5\sqrt{3}}{11}}</math>. | ||
+ | |||
+ | -Magnetoninja | ||
+ | |||
+ | ==Video Solution by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=akLlCXKtXnk | ||
+ | ==See also== | ||
+ | {{AMC12 box|year=2024|ab=B|num-b=18|num-a=20}} | ||
+ | {{MAA Notice}} |
Latest revision as of 15:56, 23 December 2024
Contents
Problem 19
Equilateral with side length is rotated about its center by angle , where , to form . See the figure. The area of hexagon is . What is ?
Solution 1
Let O be circumcenter of the equilateral triangle
Easily get
is invalid given ,
Solution #2
From 's side lengths of 14, we get We let And
The answer would be
Which area =
And area =
So we have that
Which means
Now, can be calculated using the addition identity, which gives the answer of
~mitsuihisashi14 ~luckuso (fixed Latex error )
Solution 3 (No Trig Manipulations)
Let the circumcenter of the circle inscribing this polygon be . The area of the equilateral triangle is . The area of one of the three smaller triangles, say is . Let be the altitude of , so if we extend to point where , we get right triangle . Note that the height , computed given the area and side length , so . so Pythag gives . This means that , so Pythag gives . Let and the midpoint of be so that , so that Pythag on gives . Then . Then .
-Magnetoninja
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=akLlCXKtXnk
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.