Difference between revisions of "2024 AMC 12B Problems/Problem 19"
(→Solution 1) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 14: | Line 14: | ||
Let O be circumcenter of the equilateral triangle | Let O be circumcenter of the equilateral triangle | ||
− | Easily get | + | Easily get <math>OF = \frac{14\sqrt{3}}{3}</math> |
− | + | <math>2 \cdot \triangle(OFC) + \triangle(OCE) = OF^2 \cdot \sin(\theta) + OF^2 \cdot \sin(120 - \theta)</math> | |
− | <cmath> = \frac{14^2 | + | <cmath> = \frac{14^2 \cdot 3}{9} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> |
<cmath> = \frac{196}{3} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | <cmath> = \frac{196}{3} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | ||
− | <cmath> = 2 | + | <cmath> = 2 \cdot {\frac{1}{3} } \cdot(ABCDEF) = 2\cdot \frac{91\sqrt{3}}{3} </cmath> |
<cmath> \sin(\theta) + \sin(120 - \theta) = \frac{13\sqrt{3}}{14} </cmath> | <cmath> \sin(\theta) + \sin(120 - \theta) = \frac{13\sqrt{3}}{14} </cmath> | ||
Line 25: | Line 25: | ||
<cmath> \sqrt{3} \sin( \theta) + \cos( \theta) = \frac{13 }{7} </cmath> | <cmath> \sqrt{3} \sin( \theta) + \cos( \theta) = \frac{13 }{7} </cmath> | ||
<cmath> \cos( \theta) = \frac{13 }{7} - \sqrt{3} \sin( \theta) </cmath> | <cmath> \cos( \theta) = \frac{13 }{7} - \sqrt{3} \sin( \theta) </cmath> | ||
− | <cmath> \frac{169 }{49} - \frac{26\sqrt{3} }{7} \sin( \theta) + 4 \sin( \theta)^2 = | + | <cmath> \frac{169 }{49} - \frac{26\sqrt{3} }{7} \sin( \theta) + 4 \sin( \theta)^2 = 1 </cmath> |
<cmath> \sin( \theta) = \frac{5\sqrt{3} }{14} or \frac{4\sqrt{3} }{7} </cmath> | <cmath> \sin( \theta) = \frac{5\sqrt{3} }{14} or \frac{4\sqrt{3} }{7} </cmath> | ||
<math>\frac{4\sqrt{3} }{7} </math> is invalid given <math>\theta \leq 60^\circ </math> , <math>\sin(\theta ) < \sin( 60^\circ ) = \frac{\sqrt{3} }{2} = \frac{\sqrt{3} \cdot 3.5}{7} </math> | <math>\frac{4\sqrt{3} }{7} </math> is invalid given <math>\theta \leq 60^\circ </math> , <math>\sin(\theta ) < \sin( 60^\circ ) = \frac{\sqrt{3} }{2} = \frac{\sqrt{3} \cdot 3.5}{7} </math> | ||
Line 66: | Line 66: | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] (fixed Latex error ) | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] (fixed Latex error ) | ||
+ | ==Video Solution by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=akLlCXKtXnk | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=B|num-b=18|num-a=20}} | {{AMC12 box|year=2024|ab=B|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 14:54, 19 November 2024
Problem 19
Equilateral with side length is rotated about its center by angle , where , to form . See the figure. The area of hexagon is . What is ?
Solution 1
Let O be circumcenter of the equilateral triangle
Easily get
is invalid given ,
Solution #2
From 's side lengths of 14, we get OF = OC = OE = We let angle FOC = () And therefore angle EOC = 120 - ()
The answer would be 3 * (Area + Area )
Which area = 0.5 *
And area = 0.5 *
Therefore the answer would be 3 * 0.5 * (
Which
So
Therefore
And
Which
can be calculated using addition identity, which gives the answer of
(I would really appreciate if someone can help me fix my code and format)
~mitsuihisashi14 ~luckuso (fixed Latex error )
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=akLlCXKtXnk
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.