Difference between revisions of "2024 AMC 12B Problems/Problem 17"
(→Solution 1) |
(→Solution 1) |
||
Line 8: | Line 8: | ||
==Solution 1== | ==Solution 1== | ||
− | -10< | + | -10 <math>\leq</math> a, b <math>\leq</math> 10 , each of a,b has 21 choices |
− | + | ||
+ | Applying Vieta, | ||
+ | |||
+ | <math>x_1 \cdot x_2 \cdot x_3 = -6</math> | ||
+ | |||
+ | <math> x_1 + x_2+ x_2 = -a </math> | ||
+ | |||
+ | <math> x_1 \cdot x_2 + x_1 \cdot x_3 + x_3 \cdot x_2 = b</math> | ||
Case: | Case: | ||
− | |||
− | ( | + | (1) <math> (x_1,x_2,x_3) </math> = (-1,-1,6) , b = 13 not valid |
− | ( | + | (2) <math> (x_1,x_2,x_3) </math> = (-1,1,6) , b = -1, a=-6 valid |
− | ( | + | (3) <math> (x_1,x_2,x_3) </math> = ( 1,2,-3) , b = -7, a=0 valid |
− | ( | + | (4) <math> (x_1,x_2,x_3) </math> = (1,-2,3) , b = -7, a=2 valid |
− | ( | + | (5) <math> (x_1,x_2,x_3) </math> = (-1,2,3) , b = 1, a=4 valid |
− | + | (6) <math> (x_1,x_2,x_3) </math> = (-1,-2,-3) , b = 11 invalid | |
+ | |||
+ | probability = <math>\frac{4}{21*20}</math> = <math>\boxed{\textbf{(C) }\frac{1}{105}}</math> | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
+ | |||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=B|num-b=16|num-a=18}} | {{AMC12 box|year=2024|ab=B|num-b=16|num-a=18}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:18, 14 November 2024
Problem 17
Integers and are randomly chosen without replacement from the set of integers with absolute value not exceeding . What is the probability that the polynomial has distinct integer roots?
.
Solution 1
-10 a, b 10 , each of a,b has 21 choices
Applying Vieta,
Case:
(1) = (-1,-1,6) , b = 13 not valid
(2) = (-1,1,6) , b = -1, a=-6 valid
(3) = ( 1,2,-3) , b = -7, a=0 valid
(4) = (1,-2,3) , b = -7, a=2 valid
(5) = (-1,2,3) , b = 1, a=4 valid
(6) = (-1,-2,-3) , b = 11 invalid
probability = =
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.