Difference between revisions of "2024 AMC 12B Problems/Problem 19"
(Created blank page) |
|||
Line 1: | Line 1: | ||
+ | ==Problem 19== | ||
+ | Equilateral <math>\triangle ABC</math> with side length <math>14</math> is rotated about its center by angle <math>\theta</math>, where <math>0 < \theta < 60^{\circ}</math>, to form <math>\triangle DEF</math>. See the figure. The area of hexagon <math>ADBECF</math> is <math>91\sqrt{3}</math>. What is <math>\tan\theta</math>? | ||
+ | <asy> | ||
+ | // Credit to shihan for this diagram. | ||
+ | defaultpen(fontsize(13)); size(200); | ||
+ | pair O=(0,0),A=dir(225),B=dir(-15),C=dir(105),D=rotate(38.21,O)*A,E=rotate(38.21,O)*B,F=rotate(38.21,O)*C; | ||
+ | draw(A--B--C--A,gray+0.4);draw(D--E--F--D,gray+0.4); draw(A--D--B--E--C--F--A,black+0.9); dot(O); dot("$A$",A,dir(A)); dot("$B$",B,dir(B)); dot("$C$",C,dir(C)); dot("$D$",D,dir(D)); dot("$E$",E,dir(E)); dot("$F$",F,dir(F)); | ||
+ | </asy> | ||
+ | |||
+ | <math>\textbf{(A)}~\frac{3}{4}\qquad\textbf{(B)}~\frac{5\sqrt{3}}{11}\qquad\textbf{(C)}~\frac{4}{5}\qquad\textbf{(D)}~\frac{11}{13}\qquad\textbf{(E)}~\frac{7\sqrt{3}}{13}</math> | ||
+ | |||
+ | ==Solution #1== | ||
+ | let O be circumcenter of the equilateral triangle | ||
+ | |||
+ | OF = <math>\frac{14\sqrt{3}}{3} </math> | ||
+ | |||
+ | 2(Area(OFC) + Area (OCE)) = <cmath> OF^2 * sin(\theta) + OF^2 * sin(120 - \theta) </cmath> | ||
+ | <cmath> = \frac{14^2 * 3}{9} ( sin(\theta) + sin(120 - \theta) ) </cmath> | ||
+ | <cmath> = \frac{196}{3} ( sin(\theta) + sin(120 - \theta) ) </cmath> | ||
+ | <cmath> = 2 * {\frac{1}{3} } * Area (ABCDEF) = 2* \frac{91\sqrt{3}}{3} </cmath> | ||
+ | |||
+ | <cmath> sin(\theta) + sin(120 - \theta) = \frac{13\sqrt{3}}{14} </cmath> | ||
+ | <cmath> sin(\theta) + \frac{ \sqrt{3}}{2}cos( \theta) +\frac{ \sqrt{1}}{2}sin( \theta) = \frac{13\sqrt{3}}{14} </cmath> | ||
+ | <cmath> \sqrt{3} sin( \theta) + cos( \theta) = \frac{13 }{14} </cmath> | ||
+ | <cmath> cos( \theta) = \frac{13 }{14} - \sqrt{3} sin( \theta) </cmath> | ||
+ | <cmath> \frac{169 }{49} - \frac{26\sqrt{3} }{7} sin( \theta) + 4 sin( \theta)^2 =0 </cmath> | ||
+ | <cmath> sin( \theta) = \frac{5\sqrt{3} }{14} or \frac{4\sqrt{3} }{7} </cmath> | ||
+ | <math>\frac{4\sqrt{3} }{7} </math> is invalid given <math>\theta</math><60 | ||
+ | <cmath> cos( \theta) = \frac{11 }{14} </cmath> | ||
+ | <cmath> tan( \theta) = \frac{5\sqrt{3} }{11} </cmath> | ||
+ | |||
+ | <math>\boxed{B -34} </math>. | ||
+ | |||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC12 box|year=2024|ab=B|num-b=18|num-a=20}} | ||
+ | {{MAA Notice}} |
Revision as of 02:59, 14 November 2024
Problem 19
Equilateral with side length is rotated about its center by angle , where , to form . See the figure. The area of hexagon is . What is ?
Solution #1
let O be circumcenter of the equilateral triangle
OF =
2(Area(OFC) + Area (OCE)) =
is invalid given <60
.
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.