Difference between revisions of "1971 AHSME Problems/Problem 32"

(Solution)
m (more concise)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Problem 32 ==
+
== Problem ==
  
 
If <math>s=(1+2^{-\frac{1}{32}})(1+2^{-\frac{1}{16}})(1+2^{-\frac{1}{8}})(1+2^{-\frac{1}{4}})(1+2^{-\frac{1}{2}})</math>, then <math>s</math> is equal to
 
If <math>s=(1+2^{-\frac{1}{32}})(1+2^{-\frac{1}{16}})(1+2^{-\frac{1}{8}})(1+2^{-\frac{1}{4}})(1+2^{-\frac{1}{2}})</math>, then <math>s</math> is equal to
Line 5: Line 5:
 
<math>\textbf{(A) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(B) }(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(C) }1-2^{-\frac{1}{32}}\qquad \\ \textbf{(D) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})\qquad  \textbf{(E) }\frac{1}{2}</math>
 
<math>\textbf{(A) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(B) }(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(C) }1-2^{-\frac{1}{32}}\qquad \\ \textbf{(D) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})\qquad  \textbf{(E) }\frac{1}{2}</math>
  
== Solution ==
 
  
First, we write the expression as <math>(1+\frac{1}{\sqrt[32]{2}})(1+\frac{1}{\sqrt[16]{2}})(1+\frac{1}{\sqrt[8]{2}})(1+\frac{1}{\sqrt[4]{2}})(1+\frac{1}{\sqrt[2]{2}})</math>, or <math>(1+\frac{1}{\sqrt[32]{2^1}})(1+\frac{1}{\sqrt[32]{2^2}})(1+\frac{1}{\sqrt[32]{2^4}})(1+\frac{1}{\sqrt[32]{2^8}})(1+\frac{1}{\sqrt[32]{2^{16}}})</math>
+
== Solution 1 ==
 +
Multiply both sides of the given equation by <math>(1-2^{-\frac1{32}})</math>. Using [[difference of squares]] reveals that <math>(1-2^{-\frac1{32}})(1+2^{-\frac1{32}})=(1-2^{-\frac1{16}})</math>. Thus, we can use difference of squares again on the next term, <math>(1+2^{-\frac1{16}})</math>, and the terms after that until we get <math>(1+2^{-\frac1{32}})s=(1-2^{-\frac12})(1+2^{-\frac12})=1-2^{-1}=\tfrac12</math>. Dividing both sides by <math>(1+2^{-\frac1{32}})</math> reveals that <math>s=\boxed{\textbf{(A) }\tfrac12(1+2^{-\frac1{32}})^{-1}}</math>.
 +
 
 +
== Solution 2 (50-50 guess) ==
 +
For any two reals <math>a</math> and <math>x</math> with <math>a>0</math>, <math>a^x>0</math>. Thus, we know that all of the terms <math>2^{-\frac1x}>0</math>, so <math>s</math> is the product of <math>5</math> real terms greater than <math>1</math>. Thus, <math>s>1</math>, so we can eliminate options (C), (D), and (E). Now, we have a <math>50</math>% chance of guessing the right answer, <math>\boxed{\textbf{(A) }\tfrac12(1+2^{-\frac1{32}})^{-1}}</math>.
 +
 
 +
== See Also ==
 +
{{AHSME 35p box|year=1971|num-b=31|num-a=33}}
 +
{{MAA Notice}}
 +
[[Category:Intermediate Algebra Problems]]

Latest revision as of 16:36, 8 August 2024

Problem

If $s=(1+2^{-\frac{1}{32}})(1+2^{-\frac{1}{16}})(1+2^{-\frac{1}{8}})(1+2^{-\frac{1}{4}})(1+2^{-\frac{1}{2}})$, then $s$ is equal to

$\textbf{(A) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(B) }(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(C) }1-2^{-\frac{1}{32}}\qquad \\ \textbf{(D) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})\qquad  \textbf{(E) }\frac{1}{2}$


Solution 1

Multiply both sides of the given equation by $(1-2^{-\frac1{32}})$. Using difference of squares reveals that $(1-2^{-\frac1{32}})(1+2^{-\frac1{32}})=(1-2^{-\frac1{16}})$. Thus, we can use difference of squares again on the next term, $(1+2^{-\frac1{16}})$, and the terms after that until we get $(1+2^{-\frac1{32}})s=(1-2^{-\frac12})(1+2^{-\frac12})=1-2^{-1}=\tfrac12$. Dividing both sides by $(1+2^{-\frac1{32}})$ reveals that $s=\boxed{\textbf{(A) }\tfrac12(1+2^{-\frac1{32}})^{-1}}$.

Solution 2 (50-50 guess)

For any two reals $a$ and $x$ with $a>0$, $a^x>0$. Thus, we know that all of the terms $2^{-\frac1x}>0$, so $s$ is the product of $5$ real terms greater than $1$. Thus, $s>1$, so we can eliminate options (C), (D), and (E). Now, we have a $50$% chance of guessing the right answer, $\boxed{\textbf{(A) }\tfrac12(1+2^{-\frac1{32}})^{-1}}$.

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 31
Followed by
Problem 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png