Difference between revisions of "1971 AHSME Problems/Problem 29"

(Solution)
m (see also, solution edits)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Problem 29 ==
+
== Problem ==
  
 
Given the progression <math>10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}</math>.  
 
Given the progression <math>10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}</math>.  
Line 12: Line 12:
 
==Solution==
 
==Solution==
  
The product of the sequence <math>10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}</math> is equal to <math>10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}</math> since we are looking for the smallest value <math>n</math> that will create <math>100,000</math>, or <math>10^5</math>, we set up the equation <math>10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}=10^5</math>, which simplified to <math>\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}=5</math>, or <math>1+2+3\dots n=55</math> This can be converted to <math>\frac{n(1+n)}{2}=55</math> This simplified to the quadratic <math>n^2+n-110=0</math> Or <math>(n+11)(n-10)=0</math> So <math>n=-11</math> or <math>10</math> Since only positive values of <math>n</math> work, our answer is
+
By the rules of [[exponentiation|exponents]], the product of the first <math>n</math> terms of the sequence equals <math>10^{\frac{1}{11}+\frac{2}{11}+\dots+\frac{n}{11}}</math>. From here, we can set up the equation <math>10^{\frac{1}{11}+\frac{2}{11}+\dots+\frac{n}{11}}=100,000=10^5</math>, which simplifies to <math>\frac{1}{11}+\frac{2}{11}+\dots+\frac{n}{11}=5</math>, or <math>1+2+3\dots n=55</math>. By the formula for [[triangular numbers]], <math>\frac{n(n+1)}{2}=55</math>. Thus, <math>n^2+n-110=0</math>, or <math>(n+11)(n-10)=0</math>. Because <math>n>0</math>, only <math>n=10</math> makes the product equal <math>100,000</math>. However, we have to strictly exceed <math>100,000</math>, so our answer is <math>\boxed{\textbf{(E) }11}.</math>
 +
 
 +
== See Also ==
 +
{{AHSME 35p box|year=1971|num-b=28|num-a=30}}
 +
{{MAA Notice}}

Latest revision as of 11:14, 7 August 2024

Problem

Given the progression $10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}$. The least positive integer $n$ such that the product of the first $n$ terms of the progression exceeds $100,000$ is

$\textbf{(A) }7\qquad \textbf{(B) }8\qquad \textbf{(C) }9\qquad \textbf{(D) }10\qquad  \textbf{(E) }11$

Solution

By the rules of exponents, the product of the first $n$ terms of the sequence equals $10^{\frac{1}{11}+\frac{2}{11}+\dots+\frac{n}{11}}$. From here, we can set up the equation $10^{\frac{1}{11}+\frac{2}{11}+\dots+\frac{n}{11}}=100,000=10^5$, which simplifies to $\frac{1}{11}+\frac{2}{11}+\dots+\frac{n}{11}=5$, or $1+2+3\dots n=55$. By the formula for triangular numbers, $\frac{n(n+1)}{2}=55$. Thus, $n^2+n-110=0$, or $(n+11)(n-10)=0$. Because $n>0$, only $n=10$ makes the product equal $100,000$. However, we have to strictly exceed $100,000$, so our answer is $\boxed{\textbf{(E) }11}.$

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png