1973 Canadian MO Problems

Revision as of 20:55, 16 December 2011 by Airplanes1 (talk | contribs) (Problem 7)

Problem 1

$\text{(i)}$ Solve the simultaneous inequalities, $x<\frac{1}{4x}$ and $x<0$; i.e. find a single inequality equivalent to the two simultaneous inequalities.

$\text{(ii)}$ What is the greatest integer that satisfies both inequalities $4x+13 < 0$ and $x^{2}+3x > 16$.

$\text{(iii)}$ Give a rational number between $11/24$ and $6/13$.

$\text{(iv)}$ Express $100000$ as a product of two integers neither of which is an integral multiple of $10$.

$\text{(v)}$ Without the use of logarithm tables evaluate $\frac{1}{\log_{2}36}+\frac{1}{\log_{3}36}$.


Solution

Problem 2

Solution

Problem 3

Solution

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution

Problem 7

Observe that $\frac{1}{1}= \frac{1}{2}+\frac{1}{2};\quad \frac{1}{2}=\frac{1}{3}+\frac{1}{6};\quad \frac{1}{3}=\frac{1}{4}+\frac{1}{12};\qu...$ (Error compiling LaTeX. Unknown error_msg) State a general law suggested by these examples, and prove it.

Prove that for any integer $n$ greater than $1$ there exist positive integers $i$ and $j$ such that $\frac{1}{n}= \frac{1}{i(i+1)}+\frac{1}{(i+1)(i+2)}+\frac{1}{(i+2)(i+3)}+\cdots+\frac{1}{j(j+1)}.$

Solution

Resources

1973 Canadian MO