1973 Canadian MO Problems/Problem 1
Problem
Solve the simultaneous inequalities, and ; i.e. find a single inequality equivalent to the two simultaneous inequalities.
What is the greatest integer that satisfies both inequalities and .
Give a rational number between and .
Express as a product of two integers neither of which is an integral multiple of .
Without the use of logarithm tables evaluate .
Solution
Since from the second inequality , our solution is .
With these two inequalities, we see that the greatest integer satisfying the requirements is .
. Thus, a rational number in between and is
Thus,
See also
1973 Canadian MO (Problems) | ||
Preceded by 1973 Canadian MO Problems |
1 • 2 • 3 • 4 • 5 | Followed by Problem 2 |