2009 AIME I Problems/Problem 8
Problem 8
Let . Consider all possible positive differences of pairs of elements of
. Let
be the sum of all of these differences. Find the remainder when
is divided by
.
Solution
Solution 1
When computing , the number
will be added
times (for terms
,
, ...,
), and subtracted
times. Hence
can be computed as
.
We can now simply evaluate . One reasonably simple way:
Solution 2
In this solution we show a more general approach that can be used even if were replaced by a larger value.
As in Solution 1, we show that .
Let and let
. Then obviously
.
Computing is easy, as this is simply a geometric series with sum
. Hence
.
We can compute using a trick known as the change of summation order.
Imagine writing down a table that has rows with labels 0 to 10. In row , write the number
into the first
columns. You will get a triangular table. Obviously, the row sums of this table are of the form
, and therefore the sum of all the numbers is precisely
.
Now consider the ten columns in this table. Let's label them 1 to 10. In column , you have the values
to
, each of them once. And this is just a geometric series with the sum
. We can now sum these column sums to get
.
Hence we have
. This simplifies to
.
Hence .
Then .
Solution 3
Consider the unique differences . Simple casework yields a sum of
. This method generalizes nicely as well.
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |