2009 AIME I Problems/Problem 1
Contents
Problem
Call a -digit number geometric if it has distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers.
Solution 1
Assume that the largest geometric number starts with a . We know that the common ratio must be a rational of the form for some integer , because a whole number should be attained for the 3rd term as well. When , the number is . When , the number is . When , we get , but the integers must be distinct. By the same logic, the smallest geometric number is . The largest geometric number is and the smallest is . Thus the difference is .
Solution 2
Consider the three-digit number . If its digits form a geometric progression, we must have that , that is, .
The minimum and maximum geometric numbers occur when is minimized and maximized, respectively. The minimum occurs when ; letting and achieves this, so the smallest possible geometric number is 124.
For the maximum, we have that ; is maximized when is the greatest possible perfect square; this happens when , yielding . Thus, the largest possible geometric number is 964.
Our answer is thus .
Solution 3
The smallest geometric number is because and any number containing a zero does not work. is the largest geometric number because the middle digit cannot be 8 or 7. Subtracting the numbers gives
Video Solution by OmegaLearn
https://youtu.be/1-iWPCWPsLw?t=195
~ pi_is_3.14
Video Solution
~IceMatrix
Video Solution 2
https://www.youtube.com/watch?v=P00iOJdQiL4
~Shreyas S
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.