2025 AMC 8 Problems

Revision as of 20:40, 29 January 2025 by Alwaysgonnagiveyouup (talk | contribs) (Problem 20)


2025 AMC 8 (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 1 point for each correct answer. There is no penalty for wrong answers.
  3. No aids are permitted other than plain scratch paper, writing utensils, ruler, and erasers. In particular, graph paper, compass, protractor, calculators, computers, smartwatches, and smartphones are not permitted. Rules
  4. Figures are not necessarily drawn to scale.
  5. You will have 40 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

The eight-pointed star, shown in the figure below, is a popular quilting pattern. What percent of the entire \(4\times4\) grid is covered by the star?

$\textbf{(A)}\ 40 \qquad \textbf{(B)}\ 50 \qquad \textbf{(C)}\ 60 \qquad \textbf{(D)}\ 75 \qquad \textbf{(E)}\ 80$

Solution

Problem 2

The table below shows the ancient Egyptian hieroglyphs that were used to represent different numbers.

For example, the number $32$ was represented by the hieroglyphs $\cap \cap \cap ||$. What number is represented by the following combination of hieroglyphs?

$\textbf{(A)}\ 1,423 \qquad \textbf{(B)}\ 10,423 \qquad \textbf{(C)}\ 14,023 \qquad \textbf{(D)}\ 14,203 \qquad \textbf{(E)}\ 14,230$

Solution

Problem 3

Buffalo Shuffle-o is a card game in which all the cards are distributed evenly among all players at the start of the game. When Annika and $3$ of her friends play Buffalo Shuffle-o, each player is dealt $15$ cards. Suppose $2$ more friends join the next game. How many cards will be dealt to each player?

$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 11 \qquad \textbf{(E)}\ 12$

Solution

Problem 4

Lucius is counting backward by $7$s. His first three numbers are $100$, $93$, and $86$. What is his $10$th number?

$\textbf{(A)}\ 30 \qquad \textbf{(B)}\ 37 \qquad \textbf{(C)}\ 42 \qquad \textbf{(D)}\ 44 \qquad \textbf{(E)}\ 47$

Solution

Problem 5

Solution

Problem 6

Sekou writes the numbers $15, 16, 17, 18, 19.$ After he erases one of his numbers, the sum of the remaining four numbers is a multiple of $4.$ Which number did he erase?

$\textbf{(A)}\ 15\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ 17\qquad \textbf{(D)}\ 18\qquad \textbf{(E)}\ 19$

Solution

Problem 7

On the most recent exam on Prof. Xochi's class,


5 students earned a score of at least 95%,

13 students earned a score of at least 90%,

27 students earned a score of at least 85%,

50 students earned a score of at least 80%,


How many students earned a score of at least 80% and less than 90%?

$\textbf{(A)}\ 8\qquad \textbf{(B)}\ 14\qquad \textbf{(C)}\ 22\qquad \textbf{(D)}\ 37\qquad \textbf{(E)}\ 45$

Solution

Problem 8

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

The region shown below consists of 24 squares, each with side length 1 centimeter. What is the area, in square centimeters, of the largest circle that can fit inside the region, possibly touching the boundaries?

$\textbf{(A)}\ 3\pi\qquad \textbf{(B)}\ 4\pi\qquad \textbf{(C)}\ 5\pi\qquad \textbf{(D)}\ 6\pi\qquad \textbf{(E)}\ 8\pi$

Solution

Problem 13

Solution

Problem 14

A number $N$ is inserted into the list 2, 6, 7, 7, 28. The mean is now twice as great as the median. What is $N$?

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 14\qquad \textbf{(C)}\ 20\qquad \textbf{(D)}\ 28\qquad \textbf{(E)}\ 34$

Solution

Problem 15

Solution

Problem 16

Five distinct integers from 1 to 10 are chosen, and five distinct integers from 11 to 20 are chosen. No two numbers differ by exactly 10. What is the sum of the ten chosen numbers?

$\textbf{(A)}\ 95\qquad \textbf{(B)}\ 100\qquad \textbf{(C)}\ 105\qquad \textbf{(D)}\ 110\qquad \textbf{(E)}\ 115$

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Sarika, Dev, and Rajiv are sharing a large block of cheese. They take turns cutting off half of what remains and eating it: first Sarika eats half of the cheese, then Dev eats half of the remaining half, then Rajiv eats half of what remains, then back to Sarika, and so on. They stop when the cheese is too small to see. About what fraction of the original block of cheese does Sarika eat in total?

$\textbf{(A)}\ \frac{4}{7}\qquad \textbf{(B)}\ \frac{3}{5}\qquad \textbf{(C)}\ \frac{2}{3}\qquad \textbf{(D)}\ \frac{3}{4}\qquad \textbf{(E)}\ \frac{7}{8}$

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

How many four-digit numbers have all three of the following properties?

(I) The tens and ones digit are both 9.

(II) The number is 1 less than a perfect square.

(III) The number is the product of exactly two prime numbers.

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

Solution

Problem 24

In trapezoid $ABCD$, angles $B$ and $C$ measure $60^\circ$ and $AB = DC$. The side lengths are all positive integers, and the perimeter of $ABCD$ is 30 units. How many non-congruent trapezoids satisfy all of these conditions?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

Solution

Problem 25

Makayla finds all the possible ways to draw a path in a $5 \times 5$ diamond-shaped grid. Each path starts at the bottom of the grid and ends at the top, always moving one unit northeast or northwest. She computes the area of the region between each path and the right side of the grid. Two examples are shown in the figures below. What is the sum of the areas determined by all possible paths?

$\textbf{(A)}\ 2520 \qquad \textbf{(B)}\ 3150 \qquad \textbf{(C)}\ 3840 \qquad \textbf{(D)}\ 4730 \qquad \textbf{(E)}\ 5050$

Solution

See Also

2025 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
2024 AMC 8
Followed by
2026 AMC 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

AMC 8

AMC 8 Problems and Solutions

Mathematics Competition Resources