1957 AHSME Problems/Problem 7

Revision as of 08:07, 25 July 2024 by Thepowerful456 (talk | contribs) (typo fix, category)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 7

The area of a circle inscribed in an equilateral triangle is $48\pi$. The perimeter of this triangle is:

$\textbf{(A)}\ 72\sqrt{3} \qquad \textbf{(B)}\ 48\sqrt{3}\qquad \textbf{(C)}\ 36\qquad \textbf{(D)}\ 24\qquad \textbf{(E)}\ 72$

Solution

[asy] draw((-3,-sqrt(3))--(3,-sqrt(3))--(0,2sqrt(3))--cycle); draw(circle((0,0),sqrt(3))); dot((0,0)); draw((0,0)--(0,-sqrt(3))); [/asy] We can see that the radius of the circle is $4\sqrt{3}$. We know that the radius is $\frac{1}{3}$ of each median line of the triangle; each median line is therefore $12\sqrt{3}$. Since the median line completes a $30$-$60$-$90$ triangle, we can conclude that one of the sides of the triangle is $24$. Triple the side length and we get our answer, $\boxed{\textbf{(E)}72}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png