1957 AHSME Problems/Problem 45
Problem
If two real numbers and satisfy the equation , then:
Solution
From the initial equation , we can solve for in terms of as follows: \begin{align*}\ \frac x y &= x-y \\ x &= xy-y^2 \\ y^2-xy+x &= 0 \\ y = \frac{x \pm \sqrt{x^2-4x}}2 \end{align*} Because is real, the discriminant of the above expression for must be , so . This is true when and , so we choose answer .
See Also
1957 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 44 |
Followed by Problem 46 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.