2023 AMC 12A Problems/Problem 14

Revision as of 20:07, 22 November 2023 by Countmath1 (talk | contribs) (Solution 2)

Problem

How many complex numbers satisfy the equation $z^5=\overline{z}$, where $\overline{z}$ is the conjugate of the complex number $z$?

$\textbf{(A)} ~2\qquad\textbf{(B)} ~3\qquad\textbf{(C)} ~5\qquad\textbf{(D)} ~6\qquad\textbf{(E)} ~7$

Solution 1

When $z^5=\overline{z}$, there are two conditions: either $z=0$ or $z\neq 0$. When $z\neq 0$, since $|z^5|=|\overline{z}|$, $|z|=1$. $z^5\cdot z=z^6=\overline{z}\cdot z=|z|^2=1$. Consider the $r(\cos \theta +i\sin \theta)$ form, when $z^6=1$, there are 6 different solutions for $z$. Therefore, the number of complex numbers satisfying $z^5=\bar{z}$ is $\boxed{\textbf{(E)} 7}$.

~plasta

Solution 2

Let $z = re^{i\theta}.$ We now have $\overline{z} = re^{-i\theta},$ and want to solve

\[r^5e^{5i\theta} = re^{-i\theta}.\]

From this, we have $r = 0$ as a solution, which gives $z = 0$. If $r\neq 0$, then we divide by it, yielding

\[r^4e^{5i\theta} = e^{-i\theta}.\]

Taking the magnitude of both sides tells us that $r^4 = 1$, so

\[e^{5i\theta} = e^{-i\theta}.\]

Dividing by $e^{-i\theta},$ we have $e^{6i\theta} = 1$ so $z^6 = 1$. Each of the $6$th roots of unity satisfy this condition. In total, there are $1 + 6 = \boxed{\textbf{(E)} 7}$ numbers that work.

-Benedict T (countmath 1)

Video Solution by OmegaLearn

https://youtu.be/rbdIrmOyczk

Video Solution

https://youtu.be/m627Mjp3PkM

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png