2023 AMC 12A Problems/Problem 22

Problem

Let $f$ be the unique function defined on the positive integers such that \[\sum_{d\mid n}d\cdot f\left(\frac{n}{d}\right)=1\] for all positive integers $n$. What is $f(2023)$?

$\textbf{(A)}~-1536\qquad\textbf{(B)}~96\qquad\textbf{(C)}~108\qquad\textbf{(D)}~116\qquad\textbf{(E)}~144$

Solution 1 (Very Thorough)

First, we note that $f(1) = 1$, since the only divisor of $1$ is itself.


Then, let's look at $f(p)$ for $p$ a prime. We see that \[\sum_{d \mid p} d \cdot f\left(\frac{p}{d}\right) = 1\] \[1 \cdot f(p) + p \cdot f(1) = 1\] \[f(p) = 1 - p \cdot f(1)\] \[f(p) = 1-p\] Nice.

Now consider $f(p^k)$, for $k \in \mathbb{N}$. \[\sum_{d \mid p^k} d \cdot f\left(\frac{p^k}{d}\right) = 1\] \[1 \cdot f(p^k) + p \cdot f(p^{k-1}) + p^2 \cdot f(p^{k-2}) + \dotsc + p^k f(1) = 1\].


It can be (strongly) inductively shown that $f(p^k) = f(p) = 1-p$. Here's how.

We already showed $k=1$ works. Suppose it holds for $k = n$, then

\[1 \cdot f(p^n) + p \cdot f(p^{n-1}) + p^2 \cdot f(p^{n-2}) + \dotsc + p^n f(1) = 1 \implies f(p^m) = 1-p \; \forall \; m \leqslant n\]

For $k = n+1$, we have

\[1 \cdot f(p^{n+1}) + p \cdot f(p^{n}) + p^2 \cdot f(p^{n-1}) + \dotsc + p^{n+1} f(1) = 1\], then using $f(p^m) = 1-p \; \forall \; m \leqslant n$, we simplify to

\[1 \cdot f(p^{n+1}) + p \cdot (1-p) + p^2 \cdot (1-p) + \dotsc + p^n \cdot (1-p) + p^{n+1} f(1) = 1\] \[f(p^{n+1}) + \sum_{i=1}^n p^i (1-p) + p^{n+1} = 1\] \[f(p^{n+1}) + p(1 - p^n) + p^{n+1} = 1\] \[f(p^{n+1}) + p = 1 \implies f(p^{n+1}) = 1-p\].

Very nice! Now, we need to show that this function is multiplicative, i.e. $f(pq) = f(p) \cdot f(q)$ for $\textbf{distinct}$ $p,q$ prime. It's pretty standard, let's go through it quickly. \[\sum_{d \mid pq} d \cdot f\left(\frac{pq}{d}\right) = 1\] \[1 \cdot f(pq) + p \cdot f(q) + q \cdot f(p) + pq \cdot f(1) = 1\] Using our formulas from earlier, we have \[f(pq) + p(1-q) + q(1-p) + pq = 1 \implies f(pq) = 1 - p(1-q) - q(1-p) - pq = (1-p)(1-q) = f(p) \cdot f(q)\]

Great! We're almost done now. Let's actually plug in $2023 = 7 \cdot 17^2$ into the original formula. \[\sum_{d \mid 2023} d \cdot f\left(\frac{2023}{d}\right) = 1\] \[1 \cdot f(2023) + 7 \cdot f(17^2) + 17 \cdot f(7 \cdot 17) + 7 \cdot 17 \cdot f(17) + 17^2 \cdot f(7) + 7 \cdot 17^2 \cdot f(1) = 1\] Let's use our formulas! We know \[f(7) = 1-7 = -6\] \[f(17) = 1-17 = -16\] \[f(7 \cdot 17) = f(7) \cdot f(17) = (-6) \cdot (-16) = 96\] \[f(17^2) = f(17) = -16\]

So plugging ALL that in, we have \[f(2023) = 1 - \left(7 \cdot (-16) + 17 \cdot (-6) \cdot (-16) + 7 \cdot 17 \cdot (-16) + 17^2 \cdot (-6) + 7 \cdot 17^2\right)\]

which, be my guest simplifying, is $\boxed{\textbf{(B)} \ 96}$

~ $\color{magenta} zoomanTV$

Solution 2

First, change the problem into an easier form. \[\sum_{d\mid n}d\cdot f(\frac{n}{d} )=\sum_{d\mid n}\frac{n}{d}f(d)=1\] So now we get \[\frac{1}{n}= \sum_{d\mid n}\frac{f(d)}{d}\] Also, notice that both $\frac{f(d)}{d}$ and $\frac{1}{n}$ are arithmetic functions. Applying Möbius inversion formula, we get \[\frac{f(n)}{n}=\sum_{d\mid n}\frac{ \mu (d) }{\frac{n}{d} }=\frac{1}{n} \sum_{d\mid n}d\cdot \mu (d)\] So \[f(n)=1-p_1-p_2-...+p_1p_2+...=(1-p_1)(1-p_2)...=\prod_{p\mid n}(1-p)\] So the answer should be $f(2023)=\prod_{p\mid 2023}(1-p)=(1-7)(1-17)=\boxed{\textbf{(B)} \ 96}$

~ZZZIIIVVV

Solution 3

From the problem, we want to find $f(2023)$. Using the problem, we get $f(2023)+7f(289)+17f(119)+119f(17)+289f(7)+2023f(1)=1$. By plugging in factors of $2023$, we get \begin{align} f(7)+7f(1)=1\\ f(17)+17f(1)=1\\ f(119)+7f(17)+17f(7)+119f(1)=1\\ f(289)+17f(17)+289f(1)=1 \end{align} Notice that $(4)-17(2)=f(289)$, so $f(289)=-16$. Similarly, notice that $(3)-17(1)=f(119)+7f(17)=-16$. Now, substituting this all back into our equation to solve for $f(2023)$, we get \begin{align*} f(2023)+7f(289)+17(f(119)+7f(17))+289(f(7)+7f(1))=1\\ f(2023)+7 \cdot (-16) + 17 \cdot (-16) + 289 \cdot (1) = 1\\ f(2023)=\boxed{\textbf{(B)} \ 96} \end{align*} -PhunsukhWangdu

Solution 4

Consider any $n \in \Bbb N$ with prime factorization $n = \Pi_{i=1}^k p_i^{\alpha_i}$. Thus, the equation given in this problem can be equivalently written as \[ \sum_{\beta_1 = 0}^{\alpha_1} \sum_{\beta_2 = 0}^{\alpha_2} \cdots \sum_{\beta_k = 0}^{\alpha_k} \Pi_{i=1}^k p_i^{\alpha_i - \beta_i} \cdot f \left( \Pi_{i=1}^k p_i^{\beta_i} \right) = 1 . \]

$\noindent \textbf{Special case 1}$: $n = 1$.

We have $f \left( 1 \right) = 1$.

$\noindent \textbf{Special case 2}$: $n$ is a prime.

We have \[ 1 \cdot f \left( n \right) + n \cdot f \left( 1 \right) = 1 . \]

Thus, $f \left( n \right) = 1 - n$.

$\noindent \textbf{Special case 3}$: $n$ is the square of a prime, $n = p_1^2$.

We have \[ 1 \cdot f \left( p_1^2 \right) + p_1 \cdot f \left( p_1 \right) + p_1^2 \cdot f \left( 1 \right) = 1. \]

Thus, $f \left( p_1^2 \right) = 1 - p_1$.

$\noindent \textbf{Special case 4}$: $n$ is the product of two distinct primes, $n = p_1 p_2$.

We have \[ 1 \cdot f \left( p_1 p_2 \right) + p_1 \cdot f \left( p_2 \right) + p_2 \cdot f \left( p_1 \right) + p_1 p_2 \cdot f \left( 1 \right) = 1. \]

Thus, $f \left( p_1 p_2 \right) = 1 - p_1 - p_2 + p_1 p_2$.

$\noindent \textbf{Special case 5}$: $n$ takes the form $n = p_1^2 p_2$, where $p_1$ and $p_2$ are two distinct primes.

We have \[ 1 \cdot f \left( p_1^2 p_2 \right) + p_1 \cdot f \left( p_1 p_2 \right) + p_1^2 \cdot f \left( p_2 \right) + p_2 \cdot f \left( p_1^2 \right) + p_1 p_2 f \left( p_1 \right) + p_1^2 p_2 f \left( 1 \right) = 1. \]

Thus, $f \left( p_1^2 p_2 \right) = 1 - p_1 - p_2 + p_1 p_2$.

The prime factorization of 2023 is $7 \cdot 17^2$. Therefore, \begin{align*} f \left( 2023 \right) & = 1 - 7 - 17 + 7 \cdot 17 \\ & = \boxed{\textbf{(B) 96}}. \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution by MOP 2024

https://YouTube.com/watch?v=gdhVqdRhMsQ

~r00tsOfUnity

Video Solution by OmegaLearn

https://youtu.be/Trz8DEmgAtk

Video Solution

https://youtu.be/Fyd1hGGHZ8k

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png