2003 AIME I Problems/Problem 1

Revision as of 06:27, 21 November 2023 by Kscv (talk | contribs) (Solution 2 (Alcumus))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Given that

$\frac{((3!)!)!}{3!} = k \cdot n!,$

where $k$ and $n$ are positive integers and $n$ is as large as possible, find $k + n.$

Solution

Note that\[{{\left((3!)!\right)!}\over{3!}}= {{(6!)!}\over{6}}={{720!}\over6}={{720\cdot719!}\over6}=120\cdot719!.\]Because $120\cdot719!<720!$, we can conclude that $n < 720$. Thus, the maximum value of $n$ is $719$. The requested value of $k+n$ is therefore $120+719=\boxed{839}$.

~yofro

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png