2022 AMC 10A Problems/Problem 25
Problem 25
Let , , and be squares that have vertices at lattice points (i.e., points whose coordinates are both integers) in the coordinate plane, together with their interiors. The bottom edge of each square is on the x-axis. The left edge of and the right edge of are on the -axis, and contains as many lattice points as does . The top two vertices of are in , and contains of the lattice points contained in . See the figure (not drawn to scale).
The fraction of lattice points in that are in is 27 times the fraction of lattice points in that are in . What is the minimum possible value of the edge length of plus the edge length of plus the edge length of ?
Solution
Let be the number of lattice points on the side length of square , be the number of lattice points on the side length of square , and be the number of lattice points on the side length of square . Note that the actual lengths of the side lengths are the number of lattice points minus , so we can work in terms of and subtract to get the actual answer at the end. Furthermore, note that the number of lattice points inside a rectangular region is equal to the number of lattice points in its width times the number of lattice points along its length.
Using this fact, the number of lattice points in is , the number of lattice points in is , and the number of lattice points in is .
Now, by the first condition, we have .
The second condition, the number of lattice points contained in is a fourth of the number of lattice points contained in . The number of lattice points in is equal to the sum of the lattice points in their individually bounded regions, but the lattice points along the y-axis for the full length of square is shared by both of them, so we need to subtract that out.
In all, this condition yields us
Solution in progress
~KingRavi
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.