2022 AMC 10A Problems/Problem 17

Problem

How many three-digit positive integers $\underline{a} \ \underline{b} \ \underline{c}$ are there whose nonzero digits $a,b,$ and $c$ satisfy \[0.\overline{\underline{a}~\underline{b}~\underline{c}} = \frac{1}{3} (0.\overline{a} + 0.\overline{b} + 0.\overline{c})?\] (The bar indicates repetition, thus $0.\overline{\underline{a}~\underline{b}~\underline{c}}$ is the infinite repeating decimal $0.\underline{a}~\underline{b}~\underline{c}~\underline{a}~\underline{b}~\underline{c}~\cdots$)

$\textbf{(A) } 9 \qquad \textbf{(B) } 10 \qquad \textbf{(C) } 11 \qquad \textbf{(D) } 13 \qquad \textbf{(E) } 14$

Solution

We rewrite the given equation, then rearrange: \begin{align*} \frac{100a+10b+c}{999} &= \frac13\left(\frac a9 + \frac b9 + \frac c9\right) \\ 100a+10b+c &= 37a + 37b + 37c \\ 63a &= 27b+36c \\ 7a &= 3b+4c. \end{align*} Now, this problem is equivalent to counting the ordered triples $(a,b,c)$ that satisfies the equation.

Clearly, the $9$ ordered triples $(a,b,c)=(1,1,1),(2,2,2),\ldots,(9,9,9)$ are solutions to this equation.

The expression $3b+4c$ has the same value when:

  • $b$ increases by $4$ as $c$ decreases by $3.$
  • $b$ decreases by $4$ as $c$ increases by $3.$

We find $4$ more solutions from the $9$ solutions above: $(a,b,c)=(4,8,1),(5,1,8),(5,9,2),(6,2,9).$ Note that all solutions are symmetric about $(a,b,c)=(5,5,5).$

Together, we have $9+4=\boxed{\textbf{(D) } 13}$ ordered triples $(a,b,c).$

~MRENTHUSIASM

Remark

One way to solve the Diophantine Equation, $7a=3b+4c$ is by taking $\pmod{7}$, from which the equation becomes $0\equiv 3b-3c\pmod{7} \Longrightarrow b\equiv c\pmod{7}$ so either $b=c$ or WLOG $b<c, b+7=c$.

Video Solution 1

https://youtu.be/p6IauwE8cX8

Video Solution (⚡️Lightning Fast⚡️)

https://youtu.be/mgcHM0ATUks

~Education, the Study of Everything

Video Solution 2

https://www.youtube.com/watch?v=YAazoVATYQA&list=PLmpPPbOoDfgj5BlPtEAGcB7BR_UA5FgFj&index=4

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png