1960 AHSME Problems/Problem 4

Revision as of 23:37, 7 May 2018 by Rockmanex3 (talk | contribs) (Solution to Problem 4)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Each of two angles of a triangle is $60^{\circ}$ and the included side is $4$ inches. The area of the triangle, in square inches, is:

$\textbf{(A)} 8\sqrt{3}\qquad \textbf{(B)} 8\qquad \textbf{(C)} 4\sqrt{3}\qquad \textbf{(D)} 4\qquad \textbf{(E)} 2\sqrt{3}$

Solution

If two of the angles are $60^{\circ}$, then the other angle is $60^{\circ}$ because angles in triangle add up to $180^{\circ}$. That makes the triangle an equilateral triangle, so all sides are $4$ inches long.

Using the area formula $A = \frac{s^2\sqrt{3}}{4}$, the area of the triangle is $\frac{4^2\sqrt{3}}{4} = 4\sqrt{3}$ square inches, which is answer choice $\boxed{\textbf{(C)}}$.

See Also

1960 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions