2009 AIME I Problems/Problem 10

Revision as of 00:59, 15 February 2014 by Dude123 (talk | contribs) (Solution)

Problem

The Annual Interplanetary Mathematics Examination (AIME) is written by a committee of five Martians, five Venusians, and five Earthlings. At meetings, committee members sit at a round table with chairs numbered from $1$ to $15$ in clockwise order. Committee rules state that a Martian must occupy chair $1$ and an Earthling must occupy chair $15$, Furthermore, no Earthling can sit immediately to the left of a Martian, no Martian can sit immediately to the left of a Venusian, and no Venusian can sit immediately to the left of an Earthling. The number of possible seating arrangements for the committee is $N(5!)^3$. Find $N$.

Solution

since the 5 members of each plant committee are distinct we get that the number of arrangement of sittings is in the form $N*(5!)^3$ because for each M,V,E sequence we have $5!$ arrangements within the Ms, Vs, and Es. which results in a number above


Since after each planet, only members of another planet can follow, we simply count the lengths of the blocks adding up to ten. These blocks must be of the form MVE with a certain number of M's,V's,and E's,we consider a few different cases:

1. One block of five people- There is only one way to arrange this so ${1^3}=1$.

2. Five blocks of one person - There is also only one way to arrange this so we get ${1^3}=1$.

3. Two blocks - There are two cases: $4+1$ and $3+2$. Each of these can be arranged two ways so we get ${(2+2)^3}=64$.

4. Three blocks - There are also two cases: $3+1+1$ and $2+2+1$.Each of these can be arranged three ways giving us ${(3+3)^3}=216$.

5. Four blocks - There is only one case: $2+1+1+1$. This can be arranged four ways giving us ${4^3}=64$.

Combining all these cases, we get $1+1+64+64+216= \boxed{346}$

See also

2009 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png