2016 IMO Problems/Problem 1
Contents
Problem
Triangle has a right angle at
. Let
be the point on line
such that
and
lies between
and
. Point
is chosen so that
and
is the bisector of
. Point
is chosen so that
and
is the bisector of
. Let
be the midpoint of
. Let
be the point such that
is a parallelogram. Prove that
and
are concurrent.
Solution
The Problem shows that \(\angle DAC = \angle DCA = \angle CAD\), it follows that \(AB \parallel CD\). Extend \(DC\) to intersect \(AB\) at \(G\), we get \(\angle GFA = \angle GFB = \angle CFD\). Making triangles \(\triangle CDF\) and \(\triangle AGF\) similar. Also, \(\angle FDC = \angle FGA = 90^\circ\) and \(\angle FBC = 90^\circ\), which points \(D\), \(C\), \(B\), and \(F\) are concyclic.
And \(\angle BFC = \angle FBA + \angle FAB = \angle FAE = \angle AFE\). Triangle \(\triangle AFE\) is congruent to \(\triangle FBM\), and \(AE = EF = FM = MB\). Let \(MX = EA = MF\), then points \(B\), \(C\), \(D\), \(F\), and \(X\) are concyclic.
Finally \(AD = DB\) and \(\angle DAF = \angle DBF = \angle FXD\). \(\angle MFX = \angle FXD = \angle FXM\) and \(FE \parallel MD\) with \(EF = FM = MD = DE\), making \(EFMD\) a rhombus. And \(\angle FBD = \angle MBD = \angle MXF = \angle DXF\) and triangle \(\triangle BEM\) is congruent to \(\triangle XEM\), while \(\triangle MFX\) is congruent to \(\triangle MBD\) which is congruent to \(\triangle FEM\), so \(EM = FX = BD\).
~Athmyx
Solution 2
Let . And WLOG,
. Hence,
,
,
and
. So
which means
,
,
and
are concyclic. We know that
and
, so we conclude
is parallelogram. So
. That means
is isosceles trapezoid. Hence,
. By basic angle chasing,
and
and we have seen that
, so
is isosceles trapezoid. And we know that
bisects
so
is the symmetrical axis of
. İt is clear that the symmetry of
with respect to
is
. And we are done
.
~EgeSaribas
See Also
2016 IMO (Problems) • Resources | ||
Preceded by First Problem |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 2 |
All IMO Problems and Solutions |