2009 AIME I Problems/Problem 15
Contents
Problem
In triangle , , , and . Let be a point in the interior of . Let and denote the incenters of triangles and , respectively. The circumcircles of triangles and meet at distinct points and . The maximum possible area of can be expressed in the form , where , , and are positive integers and is not divisible by the square of any prime. Find .
Solution 1
First, by Law of Cosines, we have so .
Let and be the circumcenters of triangles and , respectively. We first compute Because and are half of and , respectively, the above expression can be simplified to Similarly, . As a result
Therefore is constant (). Also, is or when is or . Let point be on the same side of as with ; is on the circle with as the center and as the radius, which is . The shortest distance from to is .
When the area of is the maximum, the distance from to has to be the greatest. In this case, it's . The maximum area of is and the requested answer is .
Solution 2
From Law of Cosines on , Now, Since and are cyclic quadrilaterals, it follows that Next, applying Law of Cosines on , \begin{align*} & BC^2=14^2=PC^2+PB^2+2\cdot PB\cdot PC\cdot\frac{\sqrt{3}}{2} \\ & \implies \frac{PC^2+PB^2-196}{PC\cdot PB}=-\sqrt{3} \\ & \implies \frac{PC}{PB}+\frac{PB}{PC}-\frac{196}{PC\cdot PB}=-\sqrt{3} \\ & \implies PC\cdot PB = 196\left(\frac{1}{\frac{PC}{PB}+\frac{PB}{PC}+\sqrt{3}}\right). \end{align*}By AM-GM, , so Finally, and the maximum area would be so the answer is .
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.