1995 AHSME Problems/Problem 8

Revision as of 12:58, 5 July 2013 by Nathan wailes (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In $\triangle ABC$, $\angle C = 90^\circ, AC = 6$ and $BC = 8$. Points $D$ and $E$ are on $\overline{AB}$ and $\overline{BC}$, respectively, and $\angle BED = 90^\circ$. If $DE = 4$, then $BD =$

$\mathrm{(A) \ 5 } \qquad \mathrm{(B) \ \frac {16}{3} } \qquad \mathrm{(C) \ \frac {20}{3} } \qquad \mathrm{(D) \ \frac {15}{2} } \qquad \mathrm{(E) \ 8 }$

Solution

[asy] size(120); defaultpen(0.7); pair  A = (0,6), B = (8,0), C= (0,0), D = (8/3,4), E = (8/3,0), F = (0, 3), G = (38/15,1.6); draw(A--B--E--D--E--B--C--A--B--cycle); label("\(A\)",A,W); label("\(B\)",B,E); label("\(C\)",C,SW); label("\(D\)",D,NE); label("\(E\)",E,S); label("\(6\)",F,W); label("\(4\)",G,NW); [/asy]

$\triangle BAC$ is a $6-8-10$ right triangle with hypotenuse $AB = 10$.

$\triangle BDE$ is similar to $\triangle BAC$ by angle-angle similarity since $E=C = 90^\circ$ and $B=B$, and thus $\frac{BD}{BA} = \frac{DE}{AC}$.

Solving the above for $BD$, we get $BD=\frac{BA\cdot DE}{AC} = 10\cdot \dfrac{4}{6}=\dfrac{20}{3}\Rightarrow \boxed{\mathrm{(C)}}$.

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png