2025 AIME II Problems/Problem 2
Revision as of 19:13, 23 February 2025 by Scrabbler94 (talk | contribs) (add solution 2, which disregards n+3 since gcd(n+2,n+3)=1)
Contents
Problem
Find the sum of all positive integers such that
divides the product
.
Solution 1
Since is positive, the positive factors of
are
,
,
, and
.
Therefore, ,
,
and
.
Since is positive,
,
and
.
is the correct answer
~ Edited by aoum
Solution 2
We observe that and
share no common prime factor, so
divides
if and only if
divides
.
By dividing either with long division or synthetic division, one obtains
. This quantity is an integer if and only if
is an integer, so
must be a factor of 39. As in Solution 1,
and the sum is
.
~scrabbler94
See also
2025 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.