2007 AMC 8 Problems/Problem 21

Revision as of 12:05, 24 December 2024 by Imgreatatmath (talk | contribs) (Solution 2)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Two cards are dealt from a deck of four red cards labeled $A$, $B$, $C$, $D$ and four green cards labeled $A$, $B$, $C$, $D$. A winning pair is two of the same color or two of the same letter. What is the probability of drawing a winning pair?

$\textbf{(A)}\ \frac{2}{7}\qquad\textbf{(B)}\ \frac{3}{8}\qquad\textbf{(C)}\ \frac{1}{2}\qquad\textbf{(D)}\ \frac{4}{7}\qquad\textbf{(E)}\ \frac{5}{8}$

Video Solution by OmegaLearn

https://youtu.be/OOdK-nOzaII?t=1712

~ pi_is_3.14

Video Solution

https://youtu.be/OOdK-nOzaII?t=1698

Video Solution by WhyMath

https://youtu.be/HZ0lxSAujrI

Solution 2

Notice that, no matter which card you choose, there are exactly $4$ cards that either have the same color or letter as it. Since there are $7$ cards left to choose from, the probability is $\boxed{\textbf{(D)}\frac47}$. -theepiccarrot7

Solution 3

We can use casework to solve this.

Case $1$: Same letter

After choosing any letter, there are seven cards left, and only one of them will produce a winning pair. Therefore, the probability is $\frac17$.


Case $2$: Same color

After choosing any letter, there are seven cards left. Three of them will make a winning pair, so the probability is $\frac37$.

Now that we have the probability for both cases, we can add them: $\frac17+\frac37=\boxed{\textbf{(D)} \frac47}$.

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png