2022 AMC 10A Problems/Problem 18

Revision as of 04:36, 19 November 2022 by MRENTHUSIASM (talk | contribs) (Added a generalized solution.)
The following problem is from both the 2022 AMC 10A #1 and 2022 AMC 12A #1, so both problems redirect to this page.

Problem

Let $T_k$ be the transformation of the coordinate plane that first rotates the plane $k$ degrees counterclockwise around the origin and then reflects the plane across the $y$-axis. What is the least positive integer $n$ such that performing the sequence of transformations $T_1, T_2, T_3, \cdots, T_n$ returns the point $(1,0)$ back to itself?

$\textbf{(A) } 359 \qquad \textbf{(B) } 360 \qquad \textbf{(C) } 719 \qquad \textbf{(D) } 720 \qquad \textbf{(E) } 721$

Solution 1

In this solution, the unit of all angles is degrees.

Let $P=(r,\theta)$ be a point in polar coordinates. Rotating $P$ by $k$ degrees counterclockwise around the origin gives the transformation $(r,\theta)\rightarrow(r,\theta+k).$

Solution 2

Note that since we're reflecting across the $y$-axis, if the point ever makes it to $(-1,0)$ then it will flip back to the original point. Note that after $T_1$ the point will be $1$ degree clockwise from the negative $x$-axis. Applying $T_2$ will rotate it to be $1$ degree counterclockwise from the negative $x$-axis, and then flip it so that it is $1$ degree clockwise from the positive $x$-axis. Therefore, after every $2$ transformations, the point rotates $1$ degree clockwise. To rotate it so that it will rotate $179$ degrees clockwise will require $179 \cdot 2 = 358$ transformations. Then finally on the last transformation, it will rotate on to $(-1,0)$ and then flip back to it's original position. Therefore, the answer is $358+1 = 359 = \boxed{A}$

~KingRavi

Solution 3

Let $A_{n}$ be the point $(\cos n^{\circ}, \sin n^{\circ})$.

Starting with $n=0$, the sequence goes \[A_{0}\rightarrow A_{179}\rightarrow A_{359}\rightarrow A_{178}\rightarrow A_{358}\rightarrow A_{177}\rightarrow A_{357}\rightarrow\cdots\]

We see that it takes $2$ turns to downgrade the point by $1^{\circ}$. Since the fifth point in the sequence is $A_{177}$, the answer is $5+2(177)=\boxed{\textbf{(A)}~359}$

Video Solution

https://youtu.be/QQrsKTErJn8

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png