Difference between revisions of "2006 AMC 12A Problems/Problem 17"
(→Solution) |
m (→Solution 3) |
||
Line 36: | Line 36: | ||
===Solution 3=== | ===Solution 3=== | ||
(Similar to Solution 1) | (Similar to Solution 1) | ||
− | First, draw line AE and mark a point Z that is equidistant from E and D so that <math>\angle{ | + | First, draw line AE and mark a point Z that is equidistant from E and D so that <math>\angle{DZE} = 90^\circ</math> and that line <math>\overline{AZ}</math> includes point D. Since DE is equal to the radius <math>r</math>, <math>DZ=EZ=\frac{r}{\sqrt2}=\frac{r\sqrt2}{2}.</math> |
Note that triangles <math>AFE</math> and <math>AZE</math> share the same hypotenuse <math>(AE)</math>, meaning that | Note that triangles <math>AFE</math> and <math>AZE</math> share the same hypotenuse <math>(AE)</math>, meaning that |
Revision as of 19:55, 21 November 2018
Problem
Square has side length , a circle centered at has radius , and and are both rational. The circle passes through , and lies on . Point lies on the circle, on the same side of as . Segment is tangent to the circle, and . What is ?
Solution
Solution 1
One possibility is to use the coordinate plane, setting at the origin. Point will be and will be since , and are collinear and contain a diagonal of . The Pythagorean theorem results in
This implies that and ; dividing gives us .
Solution 2
First note that angle is right since is tangent to the circle. Using the Pythagorean Theorem on , then, we see
But it can also be seen that . Therefore, since lies on , . Using the Law of Cosines on , we see
Thus, since and are rational, and . So , , and .
Solution 3
(Similar to Solution 1) First, draw line AE and mark a point Z that is equidistant from E and D so that and that line includes point D. Since DE is equal to the radius ,
Note that triangles and share the same hypotenuse , meaning that Plugging in our values we have: By logic and
Therefore,
See also
2006 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.