Difference between revisions of "2016 AMC 10A Problems/Problem 11"

(Problem)
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
?
+
Find the area of the shaded region.
  
 
<asy>
 
<asy>

Revision as of 13:05, 11 February 2018

Problem

Find the area of the shaded region.

[asy]  size(6cm); defaultpen(fontsize(9pt)); draw((0,0)--(8,0)--(8,5)--(0,5)--cycle); filldraw((7,0)--(8,0)--(8,1)--(0,4)--(0,5)--(1,5)--cycle,gray(0.8));  label("$1$",(1/2,5),dir(90)); label("$7$",(9/2,5),dir(90));  label("$1$",(8,1/2),dir(0)); label("$4$",(8,3),dir(0));  label("$1$",(15/2,0),dir(270)); label("$7$",(7/2,0),dir(270));  label("$1$",(0,9/2),dir(180)); label("$4$",(0,2),dir(180));  [/asy]

$\textbf{(A)}\ 4\dfrac{3}{5} \qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 5\dfrac{1}{4} \qquad \textbf{(D)}\ 6\dfrac{1}{2} \qquad \textbf{(E)}\ 8$

Solution 1

[asy]  size(6cm); defaultpen(fontsize(9pt)); draw((0,0)--(8,0)--(8,5)--(0,5)--cycle); filldraw((7,0)--(8,0)--(8,1)--(0,4)--(0,5)--(1,5)--cycle,gray(0.8));  label("$1$",(1/2,5),dir(90)); label("$7$",(9/2,5),dir(90));  label("$1$",(8,1/2),dir(0));   label("$1$",(15/2,0),dir(270)); label("$7$",(7/2,0),dir(270));  label("$1$",(0,9/2),dir(180)); label("$4$",(0,2),dir(180));  draw((0,5)--(8,0));  [/asy]

The bases of these triangles are all $1$, and their heights are $4$, $\frac{5}{2}$, $4$, and $\frac{5}{2}$. Thus, their areas are $2$, $\frac{5}{4}$, $2$, and $\frac{5}{4}$, which add to the area of the shaded region, which is $\boxed{6\frac{1}{2}}$.

Solution 2

Find the area of the unshaded area by calculating the area of the triangles and rectangles outside of the shaded region. We can do this by splitting up the unshaded areas into various triangles and rectangles as shown.

[asy]  size(6cm); defaultpen(fontsize(9pt)); draw((0,0)--(8,0)--(8,5)--(0,5)--cycle); filldraw((7,0)--(8,0)--(8,1)--(0,4)--(0,5)--(1,5)--cycle,gray(0.8));  label("$1$",(1/2,5),dir(90)); label("$4$",(6,5),dir(90)); label("$3$",(5/2,5),dir(90));  label("$1$",(8,1/2),dir(0)); label("$5/2$",(8,15/4),dir(0)); label("$3/2$",(8,7/4),dir(0));  label("$1$",(15/2,0),dir(270)); label("$4$",(2,0),dir(270)); label("$3$",(11/2,0),dir(270));  label("$1$",(0,9/2),dir(180)); label("$5/2$",(0,5/4),dir(180)); label("$3/2$",(0,13/4),dir(180));  draw((0,5/2)--(8,5/2)); draw((4,0)--(4,5));  [/asy]

Notice that the two added lines bisect each of the $4$ sides of the large rectangle.

Subtracting the unshaded area from the total area gives us $40-33\frac{1}{2}=\boxed{6\frac{1}{2}}$, so the correct answer is $\boxed{\textbf{(D)}}$.

Solution 3

Notice that we can graph this on the coordinate plane.

The top-left shaded figure has coordinates of $(1,5), (0,5), (0,4), (4,\frac{5}{2})$.

Notice that we can apply the shoelace method to find the area of this polygon.

We find that the area of the polygon is $\frac{13}{4}$.

However, notice that the two shaded regions are two congruent polygons.

Hence, the total area is $\frac{13}{2}\implies \boxed{6\frac{1}{2}}$ or $\boxed{D}$.

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png